8,754 research outputs found

    Adiabatic passage of collective excitations in atomic ensembles

    Full text link
    We describe a theoretical scheme that allows for transfer of quantum states of atomic collective excitation between two macroscopic atomic ensembles localized in two spatially-separated domains. The conception is based on the occurrence of double-exciton dark states due to the collective destructive quantum interference of the emissions from the two atomic ensembles. With an adiabatically coherence manipulation for the atom-field couplings by stimulated Ramann scattering, the dark states will extrapolate from an exciton state of an ensemble to that of another. This realizes the transport of quantum information among atomic ensembles.Comment: 7 pages, 2 figure

    Enhanced spin-orbit torques in MnAl/Ta films with improving chemical ordering

    Full text link
    We report the enhancement of spin-orbit torques in MnAl/Ta films with improving chemical ordering through annealing. The switching current density is increased due to enhanced saturation magnetization MS and effective anisotropy field HK after annealing. Both damplinglike effective field HD and fieldlike effective field HF have been increased in the temperature range of 50 to 300 K. HD varies inversely with MS in both of the films, while the HF becomes liner dependent on 1/MS in the annealed film. We infer that the improved chemical ordering has enhanced the interfacial spin transparency and the transmitting of the spin current in MnAl layer

    Topology-aware illumination design for volume rendering

    Get PDF
    © 2016 The Author(s). Background: Direct volume rendering is one of flexible and effective approaches to inspect large volumetric data such as medical and biological images. In conventional volume rendering, it is often time consuming to set up a meaningful illumination environment. Moreover, conventional illumination approaches usually assign same values of variables of an illumination model to different structures manually and thus neglect the important illumination variations due to structure differences. Results: We introduce a novel illumination design paradigm for volume rendering on the basis of topology to automate illumination parameter definitions meaningfully. The topological features are extracted from the contour tree of an input volumetric data. The automation of illumination design is achieved based on four aspects of attenuation, distance, saliency, and contrast perception. To better distinguish structures and maximize illuminance perception differences of structures, a two-phase topology-aware illuminance perception contrast model is proposed based on the psychological concept of Just-Noticeable-Difference. Conclusions: The proposed approach allows meaningful and efficient automatic generations of illumination in volume rendering. Our results showed that our approach is more effective in depth and shape depiction, as well as providing higher perceptual differences between structures

    Orbital Characters Determined from Fermi Surface Intensity Patterns using Angle-Resolved Photoemission Spectroscopy

    Full text link
    In order to determine the orbital characters on the various Fermi surface pockets of the Fe-based superconductors Ba0.6_{0.6}K0.4_{0.4}Fe2_{2}As2_{2} and FeSe0.45_{0.45}Te0.55_{0.55}, we introduce a method to calculate photoemission matrix elements. We compare our simulations to experimental data obtained with various experimental configurations of beam orientation and light polarization. We show that the photoemission intensity patterns revealed from angle-resolved photoemission spectroscopy measurements of Fermi surface mappings and energy-momentum plots along high-symmetry lines exhibit asymmetries carrying precious information on the nature of the states probed, information that is destroyed after the data symmetrization process often performed in the analysis of angle-resolved photoemission spectroscopy data. Our simulations are consistent with Fermi surfaces originating mainly from the dxyd_{xy}, dxzd_{xz} and dyzd_{yz} orbitals in these materials.Comment: 16 pages, 9 figures. Figures modified, typos corrected, appendix adde

    The implement of plastic oval tags for mark-recapture in juvenile Japanese flounder (Paralichthys olivaceus) on the northeast coast of Shandong Province, China

    Get PDF
    As part of the stock enhancement research project of Shandong Province, China, plastic oval tags (POTs) were used to mark juvenile Japanese flounder for release, Paralichthys olivaceus (70 to 133 mm total length, TL), in 2009 and 2010. Optimal tag placement locations, retention, tagging rates, and mortality were initially evaluated. Mark–recapture experiments were carried out in the coastal waters of Weihai City to study their migratory movements: 21,202 individuals in July 2009 at Beihai and 18,350 individuals in July 2010 at Lidao. The number of recaptured individuals were 434 (2.05% recapture rate) in 2009 and 620 (3.38% recapture rate) in 2010. A radiative movement from the release site was observed in the 2009 experiment; however, the tagging experiment showed a predominantly northward dispersal of tagged flounder from the release site in 2010. The mean movement speed of the released fish was calculated as 0.46 km day-1 in 2009 and 1.05 km day-1 in 2010. Furthermore, in 2009, the average TL and wet mass increments were 36.3 ± 8.4 mm month-1 and 27.13 ± 16.09 g month-1, respectively 1 to 6 months after releasing; however, the increments were 14.7 ± 8.8 mm month-1 and 5.65 ± 4.17 g month-1, respectively in 2010.Key words: Paralichthys olivaceus, plastic oval tag, mark–recapture, movement, growth
    • …
    corecore