10,791 research outputs found

    Adventitious shoots induction and plant regeneration from cotyledons of watermelon (Citrullus lanatus L.)

    Get PDF
    A highly efficient regeneration system is a prerequisite step for successful genetic transformation ofwatermelon cultivars (Citrullus lanatus L.). The objective of this study was to establish efficient in vitro plant regeneration for three watermelon cultivars. To achieve optimal conditions for adventitious shoot induction, the 5-day-old explants (cotyledon base portion, apical portion and hypocotyl) of three cultivars were placed on MB5 media supplemented with different concentrations and combinations of growth regulators (1.0 to 10.0 mg L-1 6-benzyladenine (BA) and 0 to 1.0 mg L-1 indole acetic acid (IAA)); the explants from seedling of different development stages (0 to 10 d) were cultured on MB5 medium containing 2.0 mg L-1 BA and 0.2 mg L-1 IAA for investigating the effect of age on adventitious shoots initiation; besides, 5-day-old seedlings were grown on optimal regeneration medium supplemented with different concentrations of kanamycin for screening the lowest lethal concentration for adventitious shoots. The results show that the basal region of cotyledon showed higher frequency of shoot formation (79.17-83.33%) than the apical region (5.23-8.25%); high  percentage of shoots regeneration was induced from 5-day-old cotyledons base portion cultured on MB5 containing 1 or 2 mg L-1 BA; the 100 mg L-1 kanamycin proved to be the optimal concentration for screening the transformants. Our results provide an efficient stable regeneration system for genetic transformation of watermelon.Key words: Watermelon (Citrullus lanatus), cotyledon, growth regulator, kanamycin, regeneration

    Electron Depletion Due to Bias of a T-Shaped Field-Effect Transistor

    Full text link
    A T-shaped field-effect transistor, made out of a pair of two-dimensional electron gases, is modeled and studied. A simple numerical model is developed to study the electron distribution vs. applied gate voltage for different gate lengths. The model is then improved to account for depletion and the width of the two-dimensional electron gases. The results are then compared to the experimental ones and to some approximate analytical calculations and are found to be in good agreement with them.Comment: 16 pages, LaTex (RevTex), 8 fig

    Temperature dependence of electron-spin relaxation in a single InAs quantum dot at zero applied magnetic field

    Full text link
    The temperature-dependent electron spin relaxation of positively charged excitons in a single InAs quantum dot (QD) was measured by time-resolved photoluminescence spectroscopy at zero applied magnetic fields. The experimental results show that the electron-spin relaxation is clearly divided into two different temperature regimes: (i) T < 50 K, spin relaxation depends on the dynamical nuclear spin polarization (DNSP) and is approximately temperature-independent, as predicted by Merkulov et al. (ii) T > about 50 K, spin relaxation speeds up with increasing temperature. A model of two LO phonon scattering process coupled with hyperfine interaction is proposed to account for the accelerated electron spin relaxation at higher temperatures.Comment: 10 pages, 4 figure

    Operational retrieval of Asian sand and dust storm from FY-2C geostationary meteorological satellite and its application to real time forecast in Asia

    Get PDF
    This paper describes an operational retrieval algorithm for the sand/dust storm (SDS) from FY-2C/S-VISSR (Stretched-Visible and Infrared Spin-Scan Radiometer) developed at the National Satellite Meteorological Center (NSMC) of China. This algorithm, called Dust Retrieval Algorithm based on Geostationary Imager (DRAGI), is based on the optical and radiative physical properties of SDS in mid-infrared and thermal infrared spectral regions as well as the observation of all bands in the geostationary imager, which include the Brightness Temperature Difference (BTD) in split window channels, Infrared Difference Dust Index (IDDI) and the ratio of middle infrared reflectance to visible reflectance. It also combines the visible and water vapor bands observation of the geostationary imager to identify the dust clouds from the surface targets and meteorological clouds. The output product is validated by and related to other dust aerosol observations such as the synoptic weather reports, surface visibility, aerosol optical depth (AOD) and ground-based PM&lt;sub&gt;10&lt;/sub&gt; observations. Using the SDS-IDD product and a data assimilation scheme, the dust forecast model CUACE/Dust achieved a substantial improvement to the SDS predictions in spring 2006
    corecore