176,094 research outputs found
Nonlinear ring waves in a two-layer fluid
Surface and interfacial weakly-nonlinear ring waves in a two-layer fluid are
modelled numerically, within the framework of the recently derived
2+1-dimensional cKdV-type equation. In a case study, we consider concentric
waves from a localised initial condition and waves in a 2D version of the
dam-break problem, as well as discussing the effect of a piecewise-constant
shear flow. The modelling shows, in particular, the formation of 2D dispersive
shock waves (DSWs) and oscillatory wave trains. The surface and interfacial
DSWs generated in our numerical experiments look distinctively different.Comment: 16 pages, 21 figure
A Comment on "Memory Effects in an Interacting Magnetic Nanoparticle System"
Recently, Sun et al reported that striking memory effects had been clearly
observed in their new experiments on an interacting nanoparticle system [1].
They claimed that the phenomena evidenced the existence of a spin-glass-like
phase and supported the hierarchical model. No doubt that a particle system may
display spin-glass-like behaviors [2]. However, in our opinion, the experiments
in Ref. [1] cannot evidence the existence of spin-glass-like phase at all. We
will demonstrate below that all the phenomena in Ref. [1] can be observed in a
non-interacting particle system with a size distribution. Numerical simulations
of our experiments also display the same features.Comment: A comment on "Phys. Rev. Lett. 91, 167206
Characteristic analysis of a flash flood-affected creek catchment using LiDAR-derived DEM
Flooding occurred across a large area of southern and central Queensland in December 2010 and January 2011. Intense rainfall over the Gowrie Creek catchment caused severe flash flooding through the Toowoomba CBD (Central Business District) on the afternoon of Monday, 10 January 2011, taking lives and damaging the community. Flash floods are sudden and unexpected floods that arise from intense rainfall, generally over a small, steep catchment area. Smaller and steeper catchments have shorter critical storm
duration, and they respond more quickly to rainfall events. The resulting flood wave is characterized by very high water flows and velocities and abrupt water level rises, leading to extremely hazardous conditions. Effective flash flood forecasting for specific locations is a big challenge because of the behaviour of intense thunderstorms. A flash flood forecasting and warning system calls for accurate spatial information on catchment characteristics. A high-resolution DEM is a key spatial dataset for the characterization of a catchment to design possible flood mitigation measures. The characteristics of a catchment have a strong influence on its hydrological response. The nature of floods is dependent on both the intensity and duration of the rainfall and the catchment characteristics such as catchment area, drainage patterns and waterway steepness. Therefore, analysis of catchment characteristics is critical for hydrologic modelling and planning for flood risk mitigation. The analysis of catchment characteristics can support hydrological modelling and planning for flood risk mitigation. For example, the shape indices of sub-catchments can be used to compare the hydrological behaviour of different subcatchments. The longitudinal profiles of the creeks illustrate the slope gradients of the waterways. A hypsometric curve for each sub-catchment provides an overall view of the slope of a catchment and is closely related to ground slope characteristics of a catchment. Airborne light detection and ranging (LiDAR), also referred to as airborne laser scanning (ALS), is one of the most effective means of terrain data collection.
Using LiDAR data for generation of DEMs is becoming a standard practice in the spatial science community. This study used airborne LiDAR data to generate a high-resolution DEM for characteristic analysis of Gowrie Creek catchment in Toowoomba, Queensland, Australia, which was affected by a flash flood in January 2011. Drainage networks and sub-catchment boundaries were extracted from LiDAR-derived DEM. Catchment characteristics including sub-catchment areas and shape indices, longitudinal profiles of creeks and hypsometric curves of sub-catchments were calculated and analysed
Interdecadal variability of winter precipitation in Southeast China
Interdecadal variability of observed winter precipitation in Southeast China (1961–2010) is characterized by the first empirical orthogonal function of the three-monthly Standardized Precipitation Index (SPI) subjected to a 9-year running mean. For interdecadal time scales the dominating spatial modes represent monopole features involving the Arctic Oscillation (AO) and the sea surface temperature (SST) anomalies. Dynamic composite analysis (based on NCEP/NCAR reanalyzes) reveals the following results: (1) Interdecadal SPI-variations show a trend from a dryer state in the 1970s via an increase during the 1980s towards stabilization on wetter conditions commencing with the 1990s. (2) Increasing wetness in Southeast China is attributed to an abnormal anticyclone over south Japan, with northward transport of warm and humid air from the tropical Pacific to South China. (3) In mid-to-high latitudes the weakened southward flow of polar airmasses induces low-level warming over Eurasia due to stronger AO by warmer zonal temperature advection. This indicates that AO is attributed to the Southeast China precipitation increase influenced by circulation anomalies over the mid-to-high latitudes. (4) The abnormal moisture transport along the southwestern boundary of the abnormal anticyclone over south Japan is related to anomalous south-easterlies modulated by the SST anomalies over Western Pacific Ocean; a positive (negative) SST anomaly will strengthen (weaken) warm and humid air transport, leading to abundant (reduced) precipitation in Southeast China. That is both AO and SST anomalies determine the nonlinear trend observed in winter precipitation over Southeast China
Preparation of cluster states and W states with superconducting- quantum-interference-device qubits in cavity QED
We propose schemes to create cluster states and W states by many
superconducting-quantum-interference-device (SQUID) qubits in cavities under
the influence of the cavity decay. Our schemes do not require auxiliary qubits,
and the excited levels are only virtually coupled throughout the scheme, which
could much reduce the experimental challenge. We consider the cavity decay in
our model and analytically demonstrate its detrimental influence on the
prepared entangled states.Comment: 6 pages, 3 figures, to appear in Phys. Rev.
- …