28,231 research outputs found

    Local spin polarisation of electrons in Rashba semiconductor nanowires: effects of the bound state

    Full text link
    The local spin polarisation (LSP) of electrons in two typical semiconductor nanowires under the modulation of Rashba spin-orbit interaction (SOI) is investigated theoretically. The influence of both the SOI- and structure-induced bound states on the LSP is taken into account via the spin-resolved lattice Green function method. It is discovered that high spin-density islands with alternative signs of polarisation are formed inside the nanowires due to the interaction between the bound states and the Rashba effective magnetic field. Further study shows that the spin-density islands caused by the structure-induced bound state exhibit a strong robustness against disorder. These findings may provide an efficient way to create local magnetic moments and store information in semiconductors.Comment: 8 pages, 3 figure

    Perturbational approach to the quantum capacity of additive Gaussian quantum channel

    Full text link
    For a quantum channel with additive Gaussian quantum noise, at the large input energy side, we prove that the one shot capacity is achieved by the thermal noise state for all Gaussian state inputs, it is also true for non-Gaussian input in the sense of first order perturbation. For a general case of nn copies input, we show that up to first order perturbation, any non-Gaussian perturbation to the product thermal state input has a less quantum information transmission rate when the input energy tend to infinitive.Comment: 5 page

    Perturbation theory of von Neumann Entropy

    Full text link
    In quantum information theory, von Neumann entropy plays an important role. The entropies can be obtained analytically only for a few states. In continuous variable system, even evaluating entropy numerically is not an easy task since the dimension is infinite. We develop the perturbation theory systematically for calculating von Neumann entropy of non-degenerate systems as well as degenerate systems. The result turns out to be a practical way of the expansion calculation of von Neumann entropy.Comment: 7 page

    The impact of groundwater drawdown and vacuum pressure on sinkhole development. Physical laboratory models

    Get PDF
    A considerable proportion of the damaging sinkholes worldwide correspond to human-induced subsidence events related to groundwater withdrawal and the associated water-table decline (e.g. aquifer overexploitation, dewatering for mining). Buoyancy loss in pre-existing cavity roofs is generally claimed to be the main underlying physical mechanism. It has been also postulated that rapid water-table drawdowns may create a vacuum effect in the subsurface and contribute to enhance sinkhole activity in karstic terrains with a low effective porosity cover. Our laboratory physical model explores the role played by vacuum pressure induced water-table drops with different magnitudes and rates on sinkhole development, simulating an invariable mantled karst comprising cavernous bedrock and a low-permeability cover. The multiple tests performed include real-time monitoring of the water level drawdown (magnitude, duration, rate), the negative air pressures in the bedrock cavity and the cover, and several features of the subsidence phenomena (deformation style, size, magnitude, rate). The main findings derived from the test results include: (1) Vacuum pressure may trigger the development of cover collapse sinkholes in areas with low-permeability covers. (2) Different water-table decline patterns (magnitude, duration, rate) may result in different subsidence styles or rheological behaviours: sagging versus collapse. (3) Ground fissuring, frequently related to extension at the margin of sagging depressions, may cancel or significantly diminish the vacuum effect. (4) An overall direct relationship between the water-table decline rate and the subsidence rate. Some possible strategies are proposed to ameliorate the adverse effect of the negative air pressure on sinkhole hazard, which most probably has a local impact restricted by the concurrence of rapid water drawdowns and low-permeability covers

    Interrogation of spline surfaces with application to isogeometric design and analysis of lattice-skin structures

    Get PDF
    A novel surface interrogation technique is proposed to compute the intersection of curves with spline surfaces in isogeometric analysis. The intersection points are determined in one-shot without resorting to a Newton-Raphson iteration or successive refinement. Surface-curve intersection is required in a wide range of applications, including contact, immersed boundary methods and lattice-skin structures, and requires usually the solution of a system of nonlinear equations. It is assumed that the surface is given in form of a spline, such as a NURBS, T-spline or Catmull-Clark subdivision surface, and is convertible into a collection of B\'ezier patches. First, a hierarchical bounding volume tree is used to efficiently identify the B\'ezier patches with a convex-hull intersecting the convex-hull of a given curve segment. For ease of implementation convex-hulls are approximated with k-dops (discrete orientation polytopes). Subsequently, the intersections of the identified B\'ezier patches with the curve segment are determined with a matrix-based implicit representation leading to the computation of a sequence of small singular value decompositions (SVDs). As an application of the developed interrogation technique the isogeometric design and analysis of lattice-skin structures is investigated. The skin is a spline surface that is usually created in a computer-aided design (CAD) system and the periodic lattice to be fitted consists of unit cells, each containing a small number of struts. The lattice-skin structure is generated by projecting selected lattice nodes onto the surface after determining the intersection of unit cell edges with the surface. For mechanical analysis, the skin is modelled as a Kirchhoff-Love thin-shell and the lattice as a pin-jointed truss. The two types of structures are coupled with a standard Lagrange multiplier approach

    Topologically robust CAD model generation for structural optimisation

    Get PDF
    Computer-aided design (CAD) models play a crucial role in the design, manufacturing and maintenance of products. Therefore, the mesh-based finite element descriptions common in structural optimisation must be first translated into CAD models. Currently, this can at best be performed semi-manually. We propose a fully automated and topologically accurate approach to synthesise a structurally-sound parametric CAD model from topology optimised finite element models. Our solution is to first convert the topology optimised structure into a spatial frame structure and then to regenerate it in a CAD system using standard constructive solid geometry (CSG) operations. The obtained parametric CAD models are compact, that is, have as few as possible geometric parameters, which makes them ideal for editing and further processing within a CAD system. The critical task of converting the topology optimised structure into an optimal spatial frame structure is accomplished in several steps. We first generate from the topology optimised voxel model a one-voxel-wide voxel chain model using a topology-preserving skeletonisation algorithm from digital topology. The weighted undirected graph defined by the voxel chain model yields a spatial frame structure after processing it with standard graph algorithms. Subsequently, we optimise the cross-sections and layout of the frame members to recover its optimality, which may have been compromised during the conversion process. At last, we generate the obtained frame structure in a CAD system by repeatedly combining primitive solids, like cylinders and spheres, using boolean operations. The resulting solid model is a boundary representation (B-Rep) consisting of trimmed non-uniform rational B-spline (NURBS) curves and surfaces
    • …
    corecore