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ABSTRACT 9 

Shear zones channelize fluid flow in the Earth’s crust. However, little is known about 10 

deep crustal fluid migration and how fluids are channelized and distributed in a deforming lower 11 

crustal shear zone. This study investigates the deformation mechanisms, fluid-rock interaction 12 

and development of porosity in a monzonite ultramylonite from Lofoten, northern Norway. The 13 

rock was deformed and transformed into an ultramylonite under lower crustal conditions 14 

(T=700-730° C, P=0.65-0.8 GPa). The ultramylonite consists of feldspathic layers and domains 15 

of amphibole + quartz + calcite, which result from hydration reactions of magmatic 16 

clinopyroxene. The average grain size in both domains is <25 m. Microstructural observations 17 

and EBSD analysis are consistent with diffusion creep as the dominant deformation mechanism 18 

in both domains. Festoons of isolated quartz grains define C’-type shear bands in feldspathic 19 

layers. These quartz grains do not show a crystallographic preferred orientation. The alignment 20 

of quartz grains is parallel to the preferred elongation of pores in the ultramylonites, as evidenced 21 

from synchrotron X-ray microtomography. Such C’-type shear bands are interpreted as creep 22 
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cavitation bands resulting from diffusion creep deformation associated with grain boundary 23 

sliding. Mass-balance calculation indicates a 2% volume increase during the protolith-24 

ultramylonite transformation, which is consistent with synkinematic formation of creep cavities 25 

producing dilatancy. Thus, this study presents evidence that creep cavitation bands may control 26 

deep crustal porosity and fluid flow. Nucleation of new phases in creep cavitation bands inhibits 27 

grain growth and enhances the activity of grain-size sensitive creep, thereby stabilising strain 28 

localization in the polymineralic ultramylonites. 29 

INTRODUCTION  30 

Many studies document that metamorphic reactions and viscous deformation in the lower 31 

crust are triggered by grain-size reduction and fluid infiltration (e.g., Austrheim, 1987; Rutter 32 

and Brodie 1992; Getsinger et al., 2013). A very fine grain size of reaction products may activate 33 

grain size sensitive creep, which leads to a marked weakening of the rock and to strain 34 

localization (Rutter and Brodie 1992; Pearce et al., 2011). The feedback between grain size 35 

reduction, fluid flow, and the activity of different deformation mechanisms is critical for the 36 

understanding of the rheology of shear zones and the processes leading to strain localization. 37 

Deformation-enhanced fluid flow and development of synkinematic porosity in mid-38 

crustal shear zones rocks has been a subject of numerous studies (e.g. Mancktelow et al., 1998; 39 

Fusseis et al., 2009). Fluid transfer has been linked to syndeformational dynamic porosity 40 

generated by creep cavitation during viscous grain boundary sliding (e.g., the granular fluid 41 

pump model: Fusseis et al., 2009). Fluid infiltration results in shear zones being preferential 42 

conduits for fluid flow even at deeper crustal conditions (Austrheim, 1987; Mancktelow, 2006). 43 

However, little is known about the fluid flow in the lower crust, and, more specifically, about the 44 

processes that control formation and distribution of syndeformational porosity. 45 



 

 

 High strain torsion experiments on synthetic anorthite aggregates deforming by grain 46 

boundary sliding have highlighted the development of creep cavitation bands (Rybacki et al., 47 

2008; 2010). The bands developed with a C’-type shear band orientation, presumably from 48 

growth and coalescence of individual pores originally formed at triple junctions and dilatant sites 49 

resulting from the operation of grain boundary sliding. However, observational evidence of 50 

similar creep cavitation bands in natural ultramylonites from the lower crust is currently lacking, 51 

thus questioning the extrapolation of such experimental results to natural conditions. 52 

To investigate the relationships between deformation mechanisms and the formation and 53 

distribution of porosity in lower crustal shear zones, we have analysed a feldspar-rich 54 

ultramylonite deformed at T>700° C. Our results provide evidence for the formation of creep 55 

cavitation bands during grain-size sensitive creep and have important implications for the 56 

understanding of high-temperature creep and synkinematic fluid flow in the lower crust. 57 

SAMPLES AND METHODS 58 

 We sampled a shear zone in the Anorthosite-Monzonite-Charnockite-Granite intrusive 59 

suite of Lofoten, northern Norway (Corfu, 2004, and references therein). The shear zone is 60 

hosted in monzonite and shows a mylonite to ultramylonite transition from the shear zone 61 

boundary to the shear zone centre (see Fig. DR1; sample location in UTM coordinates relative to 62 

WGS84: zone 33W, 0505656E, 7594514N). The transition is marked by an extreme grain size 63 

reduction of perthites and clinopyroxene. Grain size reduction occurred by fracturing and 64 

neocrystallization in perthites and by hydration reactions in clinopyroxene, forming amphibole + 65 

quartz + calcite. Plagioclase-amphibole geothermobarometry and Ti-in-amphibole 66 

geothermometry yield P, T conditions of deformation of 700-730° C, 0.65-0.8 GPa (Menegon et 67 

al., 2013). 68 



 

 

We used a combination of detailed microstructural analysis, synchrotron X-ray 69 

microtomography and mass-balance calculations to characterize deformation microstructures and 70 

the associated synkinematic porosity in the ultramylonite. Electron backscatter diffraction 71 

(EBSD) was used to quantify the crystallographic preferred orientation (CPO) of feldspars, 72 

amphibole and quartz. Analytical methods are described in detail in the Data Repository. 73 

RESULTS 74 

Microstructure and EBSD analysis 75 

The ultramylonite displays a compositional banding between feldspathic layers and 76 

domains of pyroxene-derived reaction products (amphibole, quartz and calcite) (Fig. 1A). The 77 

feldspathic layers originate from the neocrystallization of perthites, and may locally contain also 78 

quartz, amphibole and biotite (Fig. 1B). The rare clinopyroxene porphyroclasts preserved in the 79 

ultramylonite show the localization of reaction products along intragranular fractures (Fig. 1C). 80 

Calcite is a synkinematic reaction product, typically at triple junctions and dilatant sites (Fig. 81 

1D). In both feldspathic and pyroxene-derived domains the average grain size is < 25 m. 82 

The EBSD phase map of a feldspathic layer shown in Fig. 2A is dominated by the bi-83 

phase mixture of plagioclase and K-feldspar deriving from the recrystallization of original 84 

perthites. The EDS compositional map of the Si content of the same area is shown in Fig. 2B. 85 

Quartz occurs as isolated grains along discrete C’-bands inclined at 10-20° to the trace of the 86 

ultramylonite foliation, consistent with the sinistral sense of shear (Fig. 2A, 2B). The CPO of 87 

quartz, K-feldspar and plagioclase and does not show a clear relationship of crystallographic 88 

planes and axes with the kinematic framework of the ultramylonite (Fig. 2C). The long axis of 89 

quartz grains are preferentially oriented either at 0-40° or at 160-180° to the trace of the 90 

ultramylonite foliation, measured anticlockwise (Fig. 2D). An additional EBSD map of a 91 



 

 

feldspathic layer containing festoons of quartz grains in a C’-band orientation is shown in the 92 

supplementary material (Fig. DR2).  93 

Amphibole CPO in an elongate domain of reaction products shows clusters of [001] axes 94 

oriented at a low angle to the stretching lineation. Poles to the (100) and (010) planes are 95 

preferentially distributed along a girdle subparallel to the YZ plane (Fig. 2E). In the same 96 

domain, quartz c-axis CPO is weak and characterized by some clustering at a low angle to the 97 

foliation plane. One cluster occurs near the centre of the pole figure (Fig. 2E). 98 

Porosity distribution and orientation 99 

 We used synchrotron X-ray microtomography to analyse the distribution and orientation 100 

of pores in two feldspathic layers that were micro-drilled from the ultramylonite sample (Fig. 101 

3A; see GSA Data Repository for details on data acquisition). The absorption microtomographic 102 

data resolve the different materials in the sample well and clearly highlight the pores, which 103 

attenuate the least and appear darkest (yellow in Fig. 3A; movies DR_ Lu-104 

1_light_pores_slcmigration and DR_ Lu-3_light_pores_slcmigration in the Data Repository).  105 

Low-aspect-ratio-pores can easily be distinguished from cracks that might have formed 106 

along grain boundaries during exhumation and cooling of the rocks (movie Lu-107 

1_pores_slcmigration_1). The latter were excluded from the following analyses. Although pore 108 

diameters can vary from about the resolution limit (1.5 μm diameter) to about 20 μm, they 109 

generally are significantly smaller than the grains themselves. The pores decorate phase and 110 

grain boundaries between feldspars and quartz, hornblende and/or biotite and often form festoons 111 

or clusters of more than two pores. 112 

Pores were segmented by binary thresholding and analysed for their orientations. 113 

Orientation of each pore was defined as the orientation of the best ellipsoid fit to the pore’s 114 



 

 

shape. To avoid a bias in the orientation data, the analysis was limited to pores with volumes 115 

between 34 μm
3
 (125 voxels) and 4119 μm

3
 (1.5x10

4
 voxels). In figure 3 we show the results 116 

from one feldspathic layer (data-set Lu-3_light); similar results were obtained from the second 117 

feldspathic layer (data-set Lu-1_light: see Fig. DR3). The pole figure shows the orientation of the 118 

long axis of the best-fit ellipsoid of the pores. These are referenced to the trace of the mylonitic 119 

foliation (a kinematic framework defined by the long axis of the best ellipsoid fit to the biotite 120 

grains, Fig. 3B). The diagram reveals that the pores have a preferred orientation, with their long 121 

axes oriented at 20-30° to the trace of the mylonitic foliation, in a C’-band orientation (Fig. 3B). 122 

Mass-balance calculations  123 

Whole-rock chemistry and total carbon (TC) analysis was performed to assess element 124 

mobility and volume changes during the protolith-to-ultramlyonite transformation using the 125 

‘normalized Gresens’ method (Potdevin and Marquer, 1987). Results of the whole-rock 126 

chemistry analysis are reported in Table DR1.  127 

The total carbon (TC) content of the ultramylonite is 2.75 times higher than the original 128 

content in the protolith (0.139 Vs. 0.037 wt%). Assuming that the original monzonite contained 129 

minute amounts of carbonate material, we used TC as a reference to calculate the volume change 130 

associated with the shear zone formation. The TC increase reflects CO2 infiltration during 131 

shearing, consistent with the synkinematic growth of calcite in the ultramylonite (Figs. 1C, 1D). 132 

A 2.75 times increase of TC implies a volume increase of 2.3%. Detailed information on the 133 

mass-balance results is compiled in the Data Repository. 134 

DISCUSSION 135 

 The CPO of all phases, the grain size and shape, and phase mixing indicate that grain size 136 

sensitive creep was the dominant deformation mechanism in both, the feldspathic layers and the 137 



 

 

pyroxene-derived layers in the ultramylonite. The feldspar CPO data is not interpretable in terms 138 

of intracrystalline plasticity. In the layers composed of reaction products, the similar grain sizes 139 

and shapes of calcite, quartz and hornblende indicate the dominance of grain size sensitive creep 140 

(Getsinger et al., 2013). At the given temperatures, calcite is expected to be substantially weaker 141 

than quartz and hornblende if deforming by dislocation creep (e.g., Renner et al., 2007). 142 

However, in the microstructures calcite never appears less competent, and all three phases show 143 

similar aspect ratios and grain sizes (Fig 1D). The distribution of hornblende [001] axes near the 144 

instantaneous stretching axis for a sinistral sense of shear (Fig. 2C) is consistent with a shape 145 

fabric attained by oriented growth and/or rigid body rotation during deformation accommodated 146 

by diffusion creep and grain boundary sliding, which is a common feature in amphibole 147 

deforming at lower crustal conditions (e.g., Berger and Stünitz, 1996; Getsinger and Hirth, 148 

2014). Quartz c-axes show weak maxima oriented similar to hornblende [001] axes. We likewise 149 

interpret this weak CPO as the result of preferential synkinematic growth of quartz grains with 150 

their c-axis parallel to the elongation direction during diffusion creep (e.g. Hippertt, 1994; 151 

Hippertt and Egydio-Silva, 1996; Kilian et al., 2011). 152 

The occurrence of quartz grains in a C’-band orientation in the feldspathic layers is 153 

interpreted as the result of creep cavitation, which is referred to as the coalescence of 154 

intergranular pores originally formed at grain triple junctions and grain boundaries (Zavada et 155 

al., 2007; Rybacki et al., 2008, 2010; Delle Piane et al., 2009). Creep cavitation takes place 156 

during grain boundary sliding, and dilating creep cavities form local sites of low stress that 157 

attract grain boundary fluids (Fusseis et al., 2009). Our mass-balance calculations indicate (1) a 158 

volume increase of 2.3%, and (2) fluid infiltration during the protolith-ultramylonite 159 

transformation. Hence, positive volume change accompanied by fluid infiltration can explain the 160 



 

 

precipitation of new phases from intragranular aqueous fluids collected in cavitation bands. 161 

Volume increase is a consequence of dilatancy at grain boundaries (Schmocker et al., 2003; 162 

Fusseis et al., 2009). 163 

Our interpretation is supported by the similar orientation of the preferred elongation of pores 164 

in the feldspathic layers and the orientation of the C´ bands (Figs. 2A-B and 3). The orientation 165 

of pores is not related to specific phase boundaries but to the kinematic framework of the shear 166 

zone. Thus, we interpret the final porosity imaged by X-ray microtomography as representative 167 

of the porosity and fluid flow at an instant during deformation. The preferred distribution of 168 

pores and isolated quartz grains in a C’-type shear band orientation is a syndeformational feature 169 

reflecting the local dilatancy in a dynamically evolving microstructure during diffusion creep 170 

deformation (Schmocker et al., 2003; Rybacki et al. 2008, 2010). Grain boundary sliding, creep 171 

cavitation, and heterogeneous nucleation form pores or new grains in low stress sites (Ree 1994; 172 

Kassner and Hayes, 2003; Kilian et al., 2011) (Fig. 4). Dilatancy has an initial form normal to the 173 

extension direction and only after some extension and further opening of the porosity pore shape 174 

attains a stable orientation along C’-bands (Fig. 4). 175 

The precipitation of quartz along dilatant grain boundaries requires material transport, most 176 

likely in a grain boundary fluid film. The interpretation is that quartz is dissolved from the 177 

pyroxene-derived reaction products (Fig. 1C) and precipitates locally in dilatant sites in the 178 

feldspathic layers. Dissolution, transport, grain rotation, and precipitation are intimately related 179 

processes during diffusion creep of geological material (e.g. Fusseis et al., 2009; Kilian et al., 180 

2011), and may result in a dynamically evolving microstructure and distribution of porosity. 181 

There is a certain degree of similarity between shape of pores and quartz grains. About 50% 182 

of the quartz grains contained in the festoons in Figs. 2A-B are preferentially elongated at 0-40° 183 



 

 

to the trace of the foliation, similar to the elongation of pores (Figs. 2D, 3B). It could indicate 184 

that shape of quartz grains is determined by the cavitation process (Fig. 4). However, considering 185 

the shape modifications that quartz grains can undergo after precipitation (i.e. dissolution, grain 186 

rotation), this is a speculation.  187 

IMPLICATIONS AND CONCLUSIONS 188 

We conclude that the orientations of pores, quartz bands and phase boundaries along C’-type 189 

shear bands in the ultramylonite are evidence of creep cavitation during lower crustal 190 

deformation accommodated by diffusion creep, grain boundary sliding and heterogeneous 191 

nucleation. The microstructures presented in this paper share many similarities with the creep 192 

cavitation bands reported from experimental deformation of synthetic anorthite aggregates 193 

(Rybacki et al., 2008; 2010). Creep cavitation bands can be identified by the occurrence of pores 194 

and isolated grains of different phases. However, if the same phases precipitate, this will result in 195 

overgrowths on existing grains, thereby rendering the identification of dilatancy and cavitation 196 

bands difficult.  197 

Strain localization in lower crustal rocks is typically associated with grain size reduction, 198 

hydration reactions and phase mixing (e.g., Rutter and Brodie, 1992; Pearce et al., 2011; 199 

Getsinger et al., 2013). Phase mixing by heterogeneous nucleation during grain size sensitive 200 

creep critically relies on synkinematic porosity (e.g., Hiraga et al., 2013). Creep cavitation can be 201 

a major contributor to porosity in lower crustal shear zones, and hence control fluid flow. 202 

Nucleation of new phases in cavitation bands inhibits grain growth and enhances the activity of 203 

grain-size sensitive creep, thereby maintaining strain localized in the polymineralic ultramylonite 204 

(e.g., Herwegh et al., 2011). Thus, our findings provide a key component for the understanding 205 



 

 

of strain localization in the lower crust and of the mechanisms by which fluid flow can be 206 

channelized within lower crustal shear zones. 207 
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FIGURE CAPTIONS 285 

Figure 1. Microstructure of the ultramylonite in thin sections cut normal to foliation and parallel 286 

to stretching lineation. Abbreviations: FL=feldspathic layer, PDRP=pyroxene-derived reaction 287 

products, Pl=plagioclase, Kfs=K-feldspar, Qtz=quartz, Hbl=hornblende, Cpx=clinopyroxene, 288 

Cc=calcite, Bt=biotite. A: Light micrograph of the layered microstructure of the ultramylonite. 289 

Parallel polarizer. B: SEM backscattered electron image of a feldspathic layer. C: SEM 290 

backscattered electron image of pyroxene-derived reaction products. Note the clinopyroxene 291 

porphyroclast with reaction products along intracrystalline fractures. D: Close-up of pyroxene-292 

derived reaction products. SEM backscattered electron image. 293 



 

 

Figure 2. Results of EBSD and EDS analysis of the ultramylonite. All plots are upper 294 

hemisphere projections contoured with 15° half-width and 5° cluster size using Channel 5 295 

(Oxford Instruments). Inset in C shows the kinematic framework of the sample (Ls=stretching 296 

lineation). Data is plotted as one point per grain (N = number of plotted grains). Maxima are 297 

expressed as multiples of the uniform distribution. Mean angular deviation number for all 298 

datasets is < 0.9. Shear sense is sinistral. A: Processed EBSD phase map from a feldspathic layer. 299 

The map is superposed to the band contrast map. Grey areas are non-indexed points. Mineral 300 

abbreviations: Kfs=K-feldspar, Pl=plagioclase, Qtz=quartz, Cc=calcite, Bt=biotite, Grt=garnet. 301 

B: EDS-derived compositional map of Si content of the same area shown in A. C: Pole figures of 302 

the crystallographic orientation data of quartz, K-feldspar and plagioclase from the area shown in 303 

A.  D: Rose diagram to show the orientation of the long axis of quartz grains included in A. Only 304 

grains with aspect ratio > 1.3 are considered (N=50). E: Pole figures of the crystallographic 305 

orientation data of hornblende and quartz from a layer of pyroxene-derived reaction products.  306 

Figure 3. Synchrotron x-ray microtomographic data. S is the trace of the ultramylonite foliation, 307 

C’ the trace of C’-bands, Ls the stretching lineation (red dot). A: Slice through microtomographic 308 

data Lu-3_light, showing 3D objects in 2D. Grey values correspond to x-ray absorption. 309 

Red=biotite, yellow=pores. The grey-scale image is the backside of a thin migrating box through 310 

the 3D data-set, in which pores and biotite are highlighted. As the box moves through the 311 

volume, pores and biotite disappear out of the box at the front and enter the slice at the back, 312 

through the greyscale image (see movie DR_Lu-3_light_pores_slcmigration in the Data 313 

Repository). The inset shows the trends of preferred orientation of pores and biotite. B: Pole 314 

figure illustrating the long axes of pores preferentially oriented at 20-30° to the foliation (top) 315 

and the preferred orientation of biotite long axis aligned in the foliation plane (bottom). Data is 316 



 

 

plotted as one-point-per-pore (or biotite) and as contoured pole figures. Equal area lower 317 

hemisphere stereoplots. Contouring is up to 10 times MUD. 318 

Figure 4. Schematic drawing of cavitation during grain boundary sliding in shear (after Pilling 319 

and Ridley 1989). Elongation orientation of the pores will depend on the extent of dilatancy. 320 

1
GSA Data Repository item 2014xxx, xxxxxxxx, is available online at 321 

www.geosociety.org/pubs/ft2014.htm, or on request from editing@geosociety.org or Documents 322 

Secretary, GSA, P.O. Box 9140, Boulder, CO 80301, USA. 323 
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SUPPLEMENTARY MATERIALS 

Methods 

Light- and Scanning Electron Microscopy. The petrography and microstructure of the 

ultramylonite have been investigated with polarized light- and scanning electron microscopy 

on polished thin sections cut perpendicular to the foliation and parallel to the stretching 

lineation. SEM backscatter electron images were collected with a Jeol-840 SEM at the 

Department of Medical Biology, University of Tromsø, and with a Philips XL-30 FEG-

ESEM at the Department of Geological Sciences, Stockholm University. The same thin 

sections were used for electron backscattered diffraction (EBSD). The grain size and aspect 

ratio of individual grains were measured on grain boundary maps obtained from manually 

digitizing SEM-BSE and EBSD images. The 2D size of the grains was calculated as the 

diameter of the circle with an area equivalent to that of the grain using the freeware Image 

SXM software (http://www.ImageSXM.org.uk). 

EBSD and EDS Analysis. EBSD and EDS analysis were carried out on a Jeol LV6610 SEM 

equipped with an Oxford Instruments Nordlys Nano EBSD detector and with an Oxford 

Instruments SDD X-Max 80 mm2 EDS detector at the Electron Microscopy Centre of 

Plymouth University. Additional EBSD analysis was conducted on a Philips XL-30 FEG-

ESEM equipped with a HKL Technology (Oxford Instruments) Nordlys detector at the 

Department of Geological Sciences, Stockholm University. Thin sections were chemically 

polished carbon coated (for EBSD analysis in Plymouth) or left uncoated (for the EBSD 

analysis in Stockholm) during the acquisition of the electron backscatter patterns over 

gridded areas of varying sizes. Step sizes of 1, 2 and 3  m were used in the 3 EBSD datasets 

presented in this study. Working conditions during the pattern acquisition were 20 or 25 keV 

accelerating voltage and either low vacuum (0.3-0.4 torr: Stockholm) or high vacuum 

(Plymouth). EBSD patterns were indexed and processed with the Channel 5 analysis suite 

from HKL Technology (Oxford Instruments). A match unit for oligoclase was created with 

the Twist component of the Channel 5 suite using the cell parameters for An16 (spatial group 

C-1) reported in Phillips et al. (1971) and served as theoretical model to index plagioclase. 

Noise reduction on the raw EBSD data was performed following the procedure tested by 

Prior et al. (2002) and Bestmann and Prior (2003). Crystallographic data were plotted on pole 

figures (upper hemispheres) using one point per grain. 
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X-Ray Microtomography. Microtomographic samples with a diameter of 1 mm were 

extracted from the ultramylonite sample shown in Fig. DR1B using a rock drill. These 

samples were scanned at the microtomography beamline 2BM of the Advanced Photon 

Source (USA). A double multilayer monochromator of 1.5% band- width provided 27 KeV 

X-rays; radiographic projections were collected in transmission mode by a CCD camera 

behind the sample in the hutch configuration. The sample detector distance was 70 mm. 

During each scan, 1440 projections were collected through rotating the samples in steps of 

0.125° over 180°. The acquisition time for each data set was about 25 min. From the 

radiographic projections, three-dimensional absorption microtomography datasets were 

reconstructed using filtered back-projection. 

Two microtomographic data-sets (Lu-1_light and Lu-3_light) were cropped to a volume of 

1000x1000x750 voxels, which corresponds to 650x650x488 μm. From these subvolumes, 

pores, which are the least-attenuating, hence darkest phase in the data, were segmented by 

binary thresholding. From the same raw data, micas were segmented using the same 

algorithm. Biotite was chosen because it defines the mylonitic foliation in the sample. From 

the segmented mica data artefacts (mostly phase contrast ‘shadows’) had to be manually 

removed. Binary data of both the pores and the micas were sequentially loaded into Blob3D 

(Ketcham, 2005) for analysis. Blob3D recognises face-connected voxels of the same kind as 

clusters (or ‘blobs’), which allows determining for each cluster the volume, shape, location 

and orientation (given in direction cosine of the inscribed eigenvectors), amongst other 

parameters. For our orientation analysis, all clusters smaller than 34 μm3 (125 voxels) and 

larger than 4120 μm3 (15000 voxels) were discarded. The former would have introduced 

artefacts due to the limited possibilities to arrange a small number of voxels in a pore cluster, 

and the latter would have very complex shapes, producing meaningless results. We 

furthermore discarded pore clusters with aspect ratios ≤ 1.7 and mica clusters with aspect 

ratios < 3. The orientation values of the longest eigenvector were converted into dip 

direction/dip angle values using the formulation given in Groshong (2006).  

For each of the two datasets (Lu-1_light and Lu-3_light), two orientation datasets exist – one 

for the mica grains and one for the pores. The longest eigenvectors of both mica data-sets 

cluster around well-defined maxima. We assume these maxima to define the orientation of 

the longest diameter of the finite strain ellipsoid in each sample. As can be seen in the 

supplementary movies and also Fig. 3A, the mica furthermore define a mylonitic foliation. 

We used these two orientations as a kinematic framework. Because this framework does not 



spatially coincide with the Cartesian coordinate axes of the microtomography data, we 

rotated the maximum defined by the longest eigenvectors of the mica data into a horizontal 

E-W orientation and the pole to the foliation in a horizontal N-S orientation using Stereo32 

(Fig. 3A and DR2). The exact same rotations were then applied to the longest eigenvectors of 

the Lu-3_light and Lu-1_light pore populations, which yield the stereo plots shown in Fig. 3B 

and DR2. This allowed us to assess the orientation of the pores in a kinematic context. 

Whole-Rock Chemical Analysis. Whole-rock chemical analysis of major elements was 

performed by wavelength dispersive X-Ray fluorescence (WD-XRF) analysis with a Bruker 

S8 Tiger XRF spectrometer at the Department of Geology, University of Tromsø. Powder 

samples were mixed and diluted at 1:7 with Li2B4O7 flux, and melted into fused beads. Loss 

on ignition (LOI) was determined from weight lost after ignition at 1050°C for 1.5 h. Total 

Carbon (TC) was measured with a LECO CS-200 at the Department of Geology, University 

of Tromsø. The LECO CS-200 uses infrared absorption to measure the quantity of carbon 

dioxide generated by combustion of the sample in an induction furnace in a pure oxygen 

environment. Accuracy of the measurements is ± 2 ppm. 

Supplementary Information on the Mass-Balance Calculations 

The two samples were collected along a continuous strain gradient in the field at a relative 

distance of 1 meter, so that we can safely conclude that the ultramylonite derives from 

(micro)structural and mineralogical modifications of the monzonite. The mass-balance 

calculations were carried out following the method designed by Potdevin and Marquer (1987), 

which is referred to as the ‘normalized Gresens’ method. The method uses the following 

equation to derive mass gain or loss of a chemical component n during modification of rock 

A to rock B in relationship to the initial amount of the component n in rock A: 

Xn = Fv (B/A)(XnB/XnA) – 1      (1) 

Xn represents the gain or loss of chemical component n related to its initial content in rock 

A, Fv is the volume factor (Fv = V modified rock B/V initial rock A), XnA is the weight % of 

the component n in the initial rock A, XnB is the weight % of the component n in the modified 

rock B, A is the density of the initial rock A, and  is the density of the modified rock B. 

Our calculations refer to the transformation protolith  ultramylonite (sample LST29F 

sample LST29B). The main differences are in the LOI and TC content, consistent with fluid 

infiltration during shear zone formation. The very minor difference between the compositions 



of the monzonite and ultramylonite (Table DR1) indicate that, apart form the fluid infiltration, 

there has been no major chemical change during deformation. Our whole-rock chemical 

composition data are consistent with the average composition of the Raftsund mangerite 

(Griffin et al. 1978). Thus, we are confident that primary heterogeneities of the protolith do 

not represent a limitation to our analysis. 

The density of the samples have been measured with a pycnometer using pulverized material 

at the Department of Geology, University of Tromsø, following routine procedures outlined 

in Hutchinson (1975). Weight measurements were repeated 5 times for each sample, and 

were reproducible with an accuracy of ± 0.004 grams. The densities of the protolith 

(monzonite) and of the ultramylonite are 2.711 g/cm3 and 2.654 g/cm3, respectively. 

Setting Xn for TC = 2.75 and solving (1) for Fv, we obtain Fv = 1.023. This means a 2.3% 

volume increase. Setting Fv = 1.023 and solving (1) for Xn, we derive the following gains or 

losses of chemical components: 

  Fv Xn   

SiO2  1.023  0.0150 

Al2O3  1.023  0.0264 

TiO2  1.023            - 0.2642 

Cr2O3  1.023            - 0.3932 

Fe2O3  1.023            - 0.1644 

MnO  1.023  0.1133 

MgO  1.023            - 0.1416 

CaO  1.023            - 0.0991 

Na2O  1.023  0.1741 

K2O  1.023            - 0.1472 

P2O5  1.023            - 0.2025 

LOI  1.023  1.7635 

TC  1.023  2.7500 
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Table DR1. Whole-rock chemical composition (major elements) of the protolith (LST29F) 

and of the ultramylonite (LST29B) samples used for the mass-balance calculations. 

Label LST29F LST29B 

Rock Type Undeformed 
Monzonite 

Ultramylonite 

SiO2 58.61 58.97
Al2O3 18.67 18.99
TiO2 1.04 0.76
Cr2O3 0.01 0.01
Fe2O3 5.24 4.34
MnO 0.09 0.10
MgO 0.98 0.84
CaO 3.86 3.45
Na2O 5.19 6.04
K2O 4.72 3.99
P2O5 0.49 0.39
Total 98.90 97.86
LOI 0.207 0.567
TC 0.037 0.138

Figure DR1. Hand specimens of the monzonite protolith (A) and of the mylonite-

ultramylonite transition (B). 



Figure DR2. A: EBSD-derived phase map of part of the same feldspathic layer shown in Fig. 

2A of the paper. Note the festoons of quartz grains with a C’-band orientation for a sinistral 

sense of shear. B: Pole figures of K-feldspar, plagioclase and quartz grains in A. 

Figure DR3. Synchrotron x-ray microtomographic data Lu-1_light (compare with Fig. 3B). S 

is the trace of the ultramylonite foliation, Z is the pole to the foliation, X is parallel to the 

stretching lineation. Pole figure illustrating the long axes of pores preferentially oriented at 

20-30° to the foliation (top) and the preferred orientation of biotite long axis aligned in the 



foliation plane (bottom). Equal area lower hemisphere stereoplots. Contouring is up to 10 

times MUD. 

Movie DR_Lu-1_pores_slcmigration. Migrating slice through the microtomographic data-

set Lu-1_light (volume of 650x650x488 μm). Grey values correspond to x-ray absorption. 

See text for further details. 

Movie DR_Lu-3_pores_slcmigration. Thick migrating slice through the microtomographic 

data-set Lu-3_light (volume of 650x650x488 μm). Grey values correspond to x-ray 

absorption. Red=biotite, yellow=pores. The greyscale image is the backside of a thin 

migrating box through the 3D data-set, in which pores and biotite are highlighted. As the box 

moves through the volume, pores and biotite disappear out of the box at the front and enter 

the slice at the back, through the greyscale image  See text for further details.
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