33,850 research outputs found

    Effect of spin relaxations on the spin mixing conductances for a bilayer structure

    Full text link
    The spin current can result in a spin-transfer torque in the normal-metal(NM)|ferromagnetic-insulator(FMI) or normal-metal(NM)|ferromagnetic-metal(FMM) bilayer. In the earlier study on this issue, the spin relaxations were ignored or introduced phenomenologically. In this paper, considering the FMM or FMI with spin relaxations described by a non-Hermitian Hamiltonian, we derive an effective spin-transfer torque and an effective spin mixing conductance in the non-Hermitian bilayer. The dependence of the effective spin mixing conductance on the system parameters (such as insulating gap, \textit{s-d} coupling, and layer thickness) as well as the relations between the real part and the imaginary part of the effective spin mixing conductance are given and discussed. We find that the effective spin mixing conductance can be enhanced in the non-Hermitian system. This provides us with the possibility to enhance the spin mixing conductance

    Undulatory swimming in fluids with polymer networks

    Full text link
    The motility behavior of the nematode Caenorhabditis elegans in polymeric solutions of varying concentrations is systematically investigated in experiments using tracking and velocimetry methods. As the polymer concentration is increased, the solution undergoes a transition from the semi-dilute to the concentrated regime, where these rod-like polymers entangle, align, and form networks. Remarkably, we find an enhancement in the nematode's swimming speed of approximately 65% in concentrated solutions compared to semi-dilute solutions. Using velocimetry methods, we show that the undulatory swimming motion of the nematode induces an anisotropic mechanical response in the fluid. This anisotropy, which arises from the fluid micro-structure, is responsible for the observed increase in swimming speed.Comment: Published 1 November 2013 in Europhysics Letter

    Evidence of Electron Fractionalization from Photoemission Spectra in the High Temperature Superconductors

    Full text link
    In the normal state of the high temperature superconductors Bi_2Sr_2CaCu_2O_{8+delta} and La_{2-x}Sr_{x}CuO_4, and in the related ``stripe ordered'' material La_1.25Nd_0.6Sr_0.15CuO_4, there is sharp structure in the measured single hole spectral function A(k,w) considered as a function of k at fixed small binding energy w. At the same time, as a function of w at fixed k on much of the putative Fermi surface, any structure in A(k,w), other than the Fermi cutoff, is very broad. This is characteristic of the situation in which there are no stable excitations with the quantum numbers of the electron, as is the case in the one dimensional electron gas.Comment: Published versio

    Thermodynamics with density and temperature dependent particle masses and properties of bulk strange quark matter and strangelets

    Full text link
    Thermodynamic formulas for investigating systems with density and/or temperature dependent particle masses are generally derived from the fundamental derivation equality of thermodynamics. Various problems in the previous treatments are discussed and modified. Properties of strange quark matter in bulk and strangelets at both zero and finite temperature are then calculated based on the new thermodynamic formulas with a new quark mass scaling, which indicates that low mass strangelets near beta equilibrium are multi-quark states with an anti-strange quark, such as the pentaquark (u^2d^2\bar{s}) for baryon nmber 1 and the octaquark (u^4d^3\bar{s}) for dibaryon etc.Comment: 14 pages, 12 figures, Revtex4 styl

    Effects of anisotropic composite skin on electrothermal anti-icing system

    Get PDF
    To study the effects of anisotropic thermal conductivity of composite aircraft skin on the heat transfer characteristics of electrothermal anti-icing system, the differential equation of anisotropic heat conduction was established using coordinate transformation of principal anisotropy axis. In addition, it was coupled with the heat and mass transfer model of the runback water film on the anti-icing surface to perform numerical simulation of the electrothermal anti-icing system. The temperature results of the vertical and cylindrical orthotropic thermal conduction in the rectangular and semi-cylindrical composite skin were consistent with those obtained by the traditional orthotropic model, which verified the anisotropic heat conduction model. The temperature distribution of anti-icing surface agreed well with the literature data, which validated the coupled heat and mass model of the runback water flow and the anisotropic skin. The anisotropic thermal conductivity of composite skin would make temperature change more gradual, and the effect was more significant where the curvature of the temperature curve was greater. However, the anti-icing surface of the electrothermal anti-icing system was slightly affected by the anisotropic heat conduction of the multilayered composite skin

    Scaling Compliance with Coverage? Firm-level Performance in China’s Industrial Energy Conservation Program

    Get PDF
    Industrial energy conservation programs in China form a cornerstone of China’s energy and environmental management efforts, engaging thousands of major energy-using enterprises, and targeting hundreds of million tons of annual coal-equivalent energy savings during the Eleventh and Twelfth Five-Year Plans (2006 to 2015). An important question in China and other developing countries is to understand how compliance systems develop and perform, especially in settings where regulators have limited prior experience and resources to support evaluation and enforcement. We use detailed, newly-released compliance reports, combined with industrial census data on participating firms, to identify the drivers of compliance at the firm level. We find evidence consistent with manipulation of reported compliance data during the Eleventh Five-Year Plan (2006–2010), but not during the expanded program under the Twelfth Five-Year Plan (2011–2015). We show that the non-compliance rate increased with the expansion of the program, and publicly-reported reasons for non-compliance vary widely. We find that firms that are large, and new program entrants, as well as firms in cities with low growth exhibit higher non-compliance rates after program expansion. Our findings demonstrate that although expanding coverage increases potential energy savings, regulators must grapple with increased heterogeneity in firms’ internal energy-saving opportunities and capabilities as well as in the degree of external accountability to regulators. Introducing a market for energy saving or CO2 emissions may help to solve the problem of uneven abatement costs, but differences in the strength of accountability relationships could undermine performance.This research was supported by Eni S.p.A. (Award No. 5210000541), the French Development Agency (AFD, Award No. RCH‑2012‑277), ICF International (MIT Energy Initiative Associate Membership Agreement), and Shell International Limited (Award No. PT14937), founding sponsors of the MIT‑Tsinghua China Energy and Climate Project. We further acknowledge the Energy Information Administration of the U.S. Department of Energy for supporting this work through a cooperative agreement to MIT (Award No. DE‑EI0001908). At MIT, the China Energy and Climate Project is part of the Joint Program on the Science and Policy of Global Change, which is supported by a consortium of industrial sponsors and U.S. federal grants, including a grant from the U.S. Department of Energy Office of Science (Award No. DE‑FG02‑94ER61937)

    Phase-reference VLBI Observations of the Compact Steep-Spectrum Source 3C 138

    Full text link
    We investigate a phase-reference VLBI observation that was conducted at 15.4 GHz by fast switching VLBA antennas between the compact steep-spectrum radio source 3C 138 and the quasar PKS 0528+134 which are about 4∘^\circ away on the sky. By comparing the phase-reference mapping with the conventional hybrid mapping, we demonstrate the feasibility of high precision astrometric measurements for sources separated by 4∘^\circ. VLBI phase-reference mapping preserves the relative phase information, and thus provides an accurate relative position between 3C 138 and PKS 0528+134 of Δα=−9m46s.531000±0s.000003\Delta\alpha=-9^m46^s.531000\pm0^s.000003 and Δδ=3∘6′26′′.90311±0′′.00007\Delta\delta=3^\circ6^\prime26^{\prime\prime}.90311\pm0^{\prime\prime}.00007 (J2000.0) in right ascension and declination, respectively. This gives an improved position of the nucleus (component A) of 3C 138 in J2000.0 to be RA=05h21m9s.88574805^h 21^m 9^s.885748 and Dec=16∘38′22′′.0526116^\circ 38' 22''.05261 under the assumption that the position of calibrator PKS 0528+134 is correct. We further made a hybrid map by performing several iterations of CLEAN and self-calibration on the phase-referenced data with the phase-reference map as an input model for the first phase self-calibration. Compared with the hybrid map from the limited visibility data directly obtained from fringe fitting 3C 138 data, this map has a similar dynamic range, but a higher angular resolution. Therefore, phase-reference technique is not only a means of phase connection, but also a means of increasing phase coherence time allowing self-calibration technique to be applied to much weaker sources.Comment: 9 pages plus 2 figures, accepted by PASJ (Vol.58 No.6
    • …
    corecore