47 research outputs found

    Rapid synthesis and enhancement in down conversion emission properties of BaAl2O4:Eu2+,RE3+ (RE3+=Y, Pr) nanophosphors

    Full text link
    [EN] BaAl2O4:Eu2+,RE3+ (RE3+=Y, Pr) down conversion nanophosphors were prepared at 600 °C by a rapid gel combustion technique in presence of air using boron as flux and urea as a fuel. A comparative study of the prepared materials was carried out with and without the addition of boric acid. The boric acid was playing the important role of flux and reducer simultaneously. The peaks available in the XPS spectra of BaAl2O4:Eu2+ at 1126.5 and 1154.8 eV was ascribed to Eu2+(3d5/2) and Eu2+(3d3/2) respectively which confirmed the presence of Eu2+ ion in the prepared lattice. Morphology of phosphors was characterized by tunneling electron microscopy. XRD patterns revealed a dominant phase characteristics of hexagonal BaAl2O4 compound and the presence of dopants having unrecognizable effects on basic crystal structure of BaAl2O4. The addition of boric acid showed a remarkable change in luminescence properties and crystal size of nanophosphors. The emission spectra of phosphors had a broad band with maximum at 490–495 nm due to electron transition from 4f65d1 → 4f7 of Eu2+ ion. The codoping of the rare earth (RE3+=Y, Pr) ions help in the enhancement of their luminescent properties. The prepared phosphors had brilliant optoelectronic properties that can be properly used for solid state display device applications.The authors gratefully recognize the financial support from the University Grant Commission (UGC), New Delhi [MRP-40-73/2011(SR)] and the European Commission through Nano CIS project (FP7-PEOPLE-2010-IRSES ref. 269279).Singh, D.; Tanwar, V.; Simantilke, AP.; MarĂ­, B.; Kadyan, PS.; Singh, I. (2016). Rapid synthesis and enhancement in down conversion emission properties of BaAl2O4:Eu2+,RE3+ (RE3+=Y, Pr) nanophosphors. Journal of Materials Science: Materials in Electronics. 27(3):2260-2266. https://doi.org/10.1007/s10854-015-4020-1S22602266273J.S. Kim, P.E. Jeon, J.C. Choi, H.L. Park, S.I. Mho, G.C. Kim, Appl Phys Lett 84, 2931 (2004)D. Jia, D.N. Hunter, J Appl Phys 100, 1131251 (2006)H. Aizawa, T. Katsumata, J. Takahashi, K. Matsunaga, S. Komuro, T. Morikawa, E. Toba, Rev Sci Instrum 74, 1344 (2003)C.N. Xu, X.G. Zheng, M. Akiyama, K. Nonaka, T. Watanabe, Appl Phys Lett 76, 179 (2000)C. Feldmann, T. Justel, C.R. Ronda, P.J. Schmidt, Adv Funct Mater 13, 511 (2004)P.J. Saines, M.M. Elcombe, B.J. Kennedy, J Solid State Chem 179, 613 (2006)R. Sakai, T. Katsumata, S. Komuro, T. Morikawa, J Lumin 85, 149 (1999)T. Aitasalo, P. Deren, J Solid State Chem 171, 114 (2003)S. Nakamura, T. Mukai, M. Senoh, J Appl Phys 76, 8189 (1994)S.H.M. Poort, G. Blasse, J Lumin 72, 247 (1997)P. Mingying, H. Guangyan, J Lumin 127, 735 (2007)X. Linjiu, H. Mingrui, T. Yanwen, C. Yongjie, K. Tomoaki, Z. Liqing, W. Ning, Jap J Applied Physics 46, 5871 (2007)T. Aitasalo, J. HölsĂ€, H. Jungner, M. Lastusaari, J. Niittykoski, J Phys Chem B 110, 4589 (2006)R. Stefani, L.C.V. Rodrigues, C.A.A. Carvalho, M.C.F.C. Felinto, H.F. Brito, M. Lastusaari, J. HölsĂ€, Opt Mater 31, 1815 (2009)M. Peng, G. Hong, J Lumin 127, 735 (2007)V. Singh, V. Natarajan, J.J. Zhu, Opt Mater 29, 1447 (2007)X.Y. Chen, C. Ma, X.X. Li, C.W. Shi, X.L. Li, D.R. Lu, J Phys Chem C 113, 2685 (2009)A.J. Zarur, J.Y. Ying, Nature 403, 65 (2000)J. Chen, F. Gu, C. Li, Cry Growth Des 8, 3175 (2008)J. Zhang, M. Yang, H. Jin, X. Wang, X. Zhao, X. Liu, L. Peng, Mater Res Bull 47, 247 (2012)P. Maƛlankiewicz, J. Szade, A. Winiarski, Ph Daniel, Cryst Res Technol 40, 410 (2005)Y.J. Chen, G.M. Qiu, Y.B. Sun et al., J Rare Earths 20, 50 (2002)F.C. Palilla, A.K. Levine, M.R. Tomkus, J Electrochem Soc 115, 642 (1968)J. Niittykoski, T. Aitasalo, J. Holsa, H. Jungner, M. Lastusaari, M. Parkkinen, M. Tukia, J Alloys Compd 374, 108 (2004)A. Nag, T.R.N. Kutty, J Alloys Compd 354, 221 (2003)D. Haranath, P. Sharma, H. Chander, J Phys D Appl Phys 38, 371 (2005

    Pure and multi metal oxide nanoparticles: synthesis, antibacterial and cytotoxic properties

    Full text link

    Mechanistic Insights into Alkane Metathesis Catalyzed by Silica-Supported Tantalum Hydrides: A DFT Study

    No full text
    Alkane metathesis transforms small alkanes into their higher and lower homologues. The reaction is catalyzed by either supported d0 metal hydrides (M = Ta, W) or d0 alkyl alkylidene complexes (M = Ta, Mo, W, Re). For the silica-supported tantalum hydrides, several reaction mechanisms have been proposed. We performed DFT-D3 calculations to analyze the viability of the proposed pathways and compare them with alkane hydrogenolysis, which is a competitive process observed at the early stages of the reaction. The results show that the reaction mechanisms for alkane metathesis and for alkane hydrogenolysis present similar energetics, and this is consistent with the fact that the process taking place depends on the concentrations of the initial reactants. Overall, a modified version of the so-called one-site mechanism that involves alkyl alkylidene intermediates appears to be more likely and consistent with experiments. According to this proposal, tantalum hydrides are precursors of the alkyl alkylidene active species. During precursor activation, H2 is released and this allows alkane hydrogenolysis to occur. In contrast, the catalytic cycle implies only the reaction with alkane molecules in excess and does not form H2. Thus, the activity for alkane hydrogenolysis decreases. The catalytic cycle proposed here implies three stages: (i) ÎČ-H elimination from the alkyl ligand, liberating ethene, (ii) alkene cross-metathesis, allowing olefin substituent exchange, and (iii) formation of the final products and alkyl alkylidene regeneration by olefin insertion and three successive 1,2-CH insertions to the alkylidene followed by α abstraction. These results relate the reactivity of silica-supported hydrides with that of the alkyl alkylidene complexes, the other common catalyst for alkane metathesis. © 2017 American Chemical Society

    The controlled disassembly of mesostructured perovskites as an avenue to fabricating high performance nanohybrid catalysts

    Get PDF
    © The Author(s) 2017. Versatile superstructures composed of nanoparticles have recently been prepared using various disassembly methods. However, little information is known on how the structural disassembly influences the catalytic performance of the materials. Here we show how the disassembly of an ordered porous La0.6Sr0.4MnO3 perovskite array, to give hexapod mesostructured nanoparticles, exposes a new crystal facet which is more active for catalytic methane combustion. On fragmenting three-dimensionally ordered macroporous (3DOM) structures in a controlled manner, via a process that has been likened to retrosynthesis, hexapod-shaped building blocks can be harvested which possess a mesostructured architecture. The hexapod-shaped perovskite catalyst exhibits excellent low temperature methane oxidation activity (T90%=438 °C; reaction rate=4.84 × 10−7 mol m−2 s−1). First principle calculations suggest the fractures, which occur at weak joints within the 3DOM architecture, afford a large area of (001) surface that displays a reduced energy barrier for hydrogen abstraction, thereby facilitating methane oxidation

    Synergic effects between N-heterocyclic carbene and chelating benzylidene-ether ligands toward the initiation step of Hoveyda-Grubbs type Ru complexes

    Get PDF
    Synergic effects between ancillary N-heterocyclic carbenes [(1,3-bis(2,4,6-trimethylphenyl)-1,3-imidazoline-2-ylidene or 1,3-bis(2,6-diisopropylphenyl)-1,3-imidazoline-2-ylidene] and chelating benzylidene ether ligands were investigated by studying initiation rates and kinetic profiles of Hoveyda-Grubbs (HG) type Ru complexes. A newly designed Ru-benzylidene-oxazinone precatalyst 4 was compared with Grela and Blechert complexes bearing modified isopropyloxy chelating leaving groups and with the standard HG complex to understand how the ancillary and the leaving ligands interact and influence the catalytic activity
    corecore