1,168 research outputs found

    Electronic structure and charge distribution of potassium iodide intercalated single-walled carbon nanotubes

    Get PDF
    Recently, potassium iodide was inserted into single-walled carbon nanotubes. We present here a first-principles density-functional theory calculation of the electronic and optical properties of a potassium iodide intercalated (10,10) nanotube. Band structure, density of states, and charge distribution of the intercalated nanotube are determined. Significant changes in the electronic structure of carbon nanotube are found upon the intercalation. In particular, the electron distribution on the tube becomes more diffusive, and one out of every four K 4s electrons transfers to the tube wall, while the other three go to I 5p orbitals. © 2004 American Institute of Physics.published_or_final_versio

    Novel RhoGAP independent pathway of tumor suppressor DLC1 regulates cancer invasion and metastasis

    Get PDF
    This journal suppl. entitled: Proceedings: AACR Annual Meeting 2014; April 5-9, 2014 ...Molecular and Cellular Biology - Poster Presentations - Proffered Abstracts - Poster Presentations - Tumor Suppressors 2: abstract no. 1565Hepatocellular carcinoma (HCC) is the fifth most common cancer worldwide. Deleted in Liver Cancer 1 (DLC1) is a tumor suppressor gene critically involved in hepatocarcinogenesis. DLC1 is a Rho GTPase activating protein (RhoGAP), which serves as the negative regulator of Rho proteins. Rho proteins are important in remodeling of actin cytoskeleton, transcription regulation, cell proliferation, tumorigenesis and metastasis. Apart from RhoGAP activity, the inhibitory activity of DLC1 is also dependent on its proper focal adhesion localization. It has been found that tensin proteins are responsible for directing DLC1 to the focal adhesions via their interaction which is important to the tumor suppression activity of DLC1. Recently, we identified that ...postprin

    Time-dependent density functional theory quantum transport simulation in non-orthogonal basis

    Get PDF
    Basing on the earlier works on the hierarchical equations of motion for quantum transport, we present in this paper a first principles scheme for time-dependent quantum transport by combining time-dependent density functional theory (TDDFT) and Keldysh's non-equilibrium Green's function formalism. This scheme is beyond the wide band limit approximation and is directly applicable to the case of non-orthogonal basis without the need of basis transformation. The overlap between the basis in the lead and the device region is treated properly by including it in the self-energy and it can be shown that this approach is equivalent to a lead-device orthogonalization. This scheme has been implemented at both TDDFT and density functional tight-binding level. Simulation results are presented to demonstrate our method and comparison with wide band limit approximation is made. Finally, the sparsity of the matrices and computational complexity of this method are analyzed.published_or_final_versio

    Epigenetic silencing of microRNA-199b-5p is associated with acquired chemoresistance via activation of JAG1-Notch1 signaling in ovarian cancer.

    Get PDF
    Epithelial ovarian cancer is a highly lethal and aggressive gynecological malignancy. The high mortality rate is due in part to the fact that many advanced cancer patients become refractory to current chemotherapeutic agents, leading to tumor recurrence and death. However, the underlying mechanisms leading to chemoresistance remain obscure. Here, we report that the loss of miR-199b-5p due to progressive epigenetic silencing leads to the activation of the JAG1-mediated Notch1 signaling cascade, thereby leading to the development of acquired chemoresistance in ovarian cancer. Using miRCURY LNATM microRNA array and Q-PCR analyses of two pairs of cisplatin-sensitive and -resistant ovarian cancer cell lines, we identified miR-199b-5p as significantly down-regulated in cisplatin-resistant ovarian cancer cells and confirmed that miR-199b-5p is clinically associated with advanced and poor survival ovarian cancers. Interestingly, the loss of miR-199b-5p could be restored by 5-Aza-dC-mediated demethylation, and methylated specific PCR (MS-PCR), bisulfite-sequencing and pyrosequencing revealed that the promoter region of miR-199b-5p was hypermethylated. Computational and mechanistic analyses identified JAG1 as a primary target of miR-199b-5p. Notably, the reduced expression of miR-199b-5p was found to be inversely correlated with the increased expression of JAG1 using an ovarian cancer tissue array. Enforced expression of miR-199b-5p sensitized ovarian cancer cells to cisplatin-induced cytotoxicity both in vitro and in vivo. Conversely, re-expression of miR-199b-5p and siRNA-mediated JAG1 knockdown or treatment with Notch specific inhibitor γ-secretase (GSI) attenuated JAG1-Notch1 signaling activity, thereby enhancing cisplatin-mediated cell cytotoxicity. Taken together, our study suggests that the epigenetic silencing of miR-199b-5p during tumor progression is significantly associated with acquired chemoresistance in ovarian cancer through the activation of JAG1-Notch1 signaling.published_or_final_versio

    Molecular characterization of fluoroquinolone-resistant Mycobacterium tuberculosis clinical isolates from Shanghai, China

    Get PDF
    China is one of the countries with the highest prevalence of fluoroquinolone-resistant (FQ r) Mycobacterium tuberculosis. Nevertheless, knowledge on the molecular characterization of the FQ r M. tuberculosis strains of this region remains very limited. This study was performed to investigate the frequencies and types of mutations present in FQ r M. tuberculosis clinical isolates collected in Shanghai, China. A total of 206 FQ r M. tuberculosis strains and 21 ofloxacin-sensitive (FQ s) M. tuberculosis strains were isolated from patients with pulmonary tuberculosis in Shanghai. The phenotypic drug susceptibilities were determined by the proportion method, and the mutations inside quinolone resistance-determining region (QRDR) of gyrA and gyrB genes were identified by DNA sequence analyses. Among 206 FQ r M. tuberculosis strains, 44% (90/206) were multidrug-resistant isolates and 39% (81/206) were extensively drug-resistant isolates. Only 9% (19/206) were monoresistant to ofloxacin. In total, 79.1% (163/206) of FQ r isolates harboured mutations in either gyrA or gyrB QRDR. Mutations in gyrA QRDR were found in 75.7% (156/206) of FQ r clinical isolates. Among those gyrA mutants, a majority (75.6%) harboured mutations at amino acid position 94, with D94G being the most frequent amino acid substitution. Mutations in gyrA QRDR showed 100% positive predictive value for FQ r M. tuberculosis in China. Mutations in gyrB were observed in 15.5% (32/206) of FQ r clinical isolates. Ten novel mutations were identified in gyrB. However, most of them also harboured mutations in gyrA, limiting their contribution to FQ r resistance in M. tuberculosis. Our findings indicated that, similar to other geographic regions, mutations in gyrA were shown to be the major mechanism of FQ r resistance in M. tuberculosis isolates. The mutations in gyrA QRDR can be a good molecular surrogate marker for detecting FQ r M. tuberculosis in China. © 2012 Elsevier Inc.postprin

    Probing the final-stage progenitor evolution for Type IIP Supernova 2017eaw in NGC 6946

    Get PDF
    We presented a detailed analysis of progenitor properties of type IIP supernova 2017eaw in NGC 6946, based on the pre-explosion images and early-time observations obtained immediately after the explosion. An unusually red star, with MF814W = −6.9 mag and mF606W − mF814W = 2.9 ± 0.2 mag, can be identified at the SN position in the pre-discovery Hubble Space Telescope (HST) images taken in 2016. The observed spectral energy distribution of this star, covering the wavelength of 0.6–2.0  μm⁠, matches that of an M4-type red supergiant (RSG) with a temperature of about 3550 K. These results suggest that SN 2017eaw has a RSG progenitor with an initial mass of 12 ± 2 M⊙. The absolute F814W-band magnitude of this progenitor star is found to evolve from −7.2 mag in 2004 to −6.9 mag in 2016. Such a dimming effect is, however, unpredicted for an RSG in its neon/oxygen burning phase when its luminosity should modestly increase. The spectrum of SN 2017eaw taken a few hours after discovery clearly shows a narrow Hα emission feature blueshifted by ∼160 km s−1. This narrow component disappeared in the spectrum taken two days later, suggesting the presence of a circumstellar material (CSM) shell (i.e. at a distance of <2.1–4.3 × 1014 cm). Combining the inferred distance with the expansion velocity of the CSM, we suggest that the progenitor of SN 2017eaw should have experienced violent mass-loss at about 1–2 yr prior to explosion, perhaps invoked by pulsational envelop ejection. This mechanism may help explain its luminosity decline in 2016 as well as the lack of detections of RSGs with relatively higher initial mass as progenitors of SNe IIP

    IMI Risk Factors for Myopia

    Full text link
    Risk factor analysis provides an important basis for developing interventions for any condition. In the case of myopia, evidence for a large number of risk factors has been presented, but they have not been systematically tested for confounding. To be useful for designing preventive interventions, risk factor analysis ideally needs to be carried through to demonstration of a causal connection, with a defined mechanism. Statistical analysis is often complicated by covariation of variables, and demonstration of a causal relationship between a factor and myopia using Mendelian randomization or in a randomized clinical trial should be aimed for. When strict analysis of this kind is applied, associations between various measures of educational pressure and myopia are consistently observed. However, associations between more nearwork and more myopia are generally weak and inconsistent, but have been supported by meta-analysis. Associations between time outdoors and less myopia are stronger and more consistently observed, including by meta-analysis. Measurement of nearwork and time outdoors has traditionally been performed with questionnaires, but is increasingly being pursued with wearable objective devices. A causal link between increased years of education and more myopia has been confirmed by Mendelian randomization, whereas the protective effect of increased time outdoors from the development of myopia has been confirmed in randomized clinical trials. Other proposed risk factors need to be tested to see if they modulate these variables. The evidence linking increased screen time to myopia is weak and inconsistent, although limitations on screen time are increasingly under consideration as interventions to control the epidemic of myopia
    corecore