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Time-dependent density functional theory quantum transport simulation
in non-orthogonal basis
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2Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and
Technology of China, Hefei, Anhui 230026, China

(Received 16 August 2013; accepted 21 November 2013; published online 13 December 2013)

Basing on the earlier works on the hierarchical equations of motion for quantum transport, we present
in this paper a first principles scheme for time-dependent quantum transport by combining time-
dependent density functional theory (TDDFT) and Keldysh’s non-equilibrium Green’s function for-
malism. This scheme is beyond the wide band limit approximation and is directly applicable to the
case of non-orthogonal basis without the need of basis transformation. The overlap between the ba-
sis in the lead and the device region is treated properly by including it in the self-energy and it can
be shown that this approach is equivalent to a lead-device orthogonalization. This scheme has been
implemented at both TDDFT and density functional tight-binding level. Simulation results are pre-
sented to demonstrate our method and comparison with wide band limit approximation is made.
Finally, the sparsity of the matrices and computational complexity of this method are analyzed.
© 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4840655]

I. INTRODUCTION

Given the rapid development of nanoscale electronics1–7

and the possibility of measuring transient current
experimentally,8 time-dependent quantum transport has
become an interesting research topic since it allows us to
investigate transient dynamics of molecules coupled with en-
vironment under time-dependent perturbation. In particular,
we are interested in first principles simulation with atomistic
details in which no empirical parameters are required.

To simulate time-dependent quantum transport, one pop-
ular approach is to combine Keldysh’s non-equilibrium
Green’s function (NEGF) formalism with time-dependent
density functional theory (TDDFT)9–20 so that one can work
with a non-interacting reference system and use single-
particle Green’s function to formulate the problem. In par-
ticular, we have developed a reduced single-electron density
matrix (RSDM) based TDDFT-NEGF-hierarchical equations
of motion (HEOM) formalism,10 which is in principle exact
and the hierarchy is closed at the 2nd tier within the TDDFT
framework. The hierarchical equation of motion method in-
volves solving for the time evolution of the reduced density
operator with the help of auxiliary density operators, which
are arranged in a hierarchical structure.21 The 1st tier auxil-
iary matrices are time-dependent unknowns that appear in the
equation of motion of RSDM. And when we attempt to derive
the equations of motion for these 1st tier auxiliary matrices,
another set of unknown matrices appear and they are called
the 2nd tier auxiliary matrices. This process continues and we
thus have a hierarchical structure of auxiliary matrices. For
non-interacting system, such as the Kohn Sham reference sys-
tem in the TDDFT framework, the hierarchy is terminated at
2nd tier exactly. If the wide-band limit (WBL) approximation

a)Electronic mail: ghc@everest.hku.hk

is made, the RSDM based HEOM can be closed at 1st tier.10, 22

Beyond the WBL, the RSDM based HEOM have been ap-
plied to simulate time-dependent quantum transport in tight-
binding model system.23, 24

However, in the derivation of RSDM based HEOM, a
localized orthonormal basis set is assumed. In practical first
principles calculation, atomic orbital basis, which are the
eigenfunctions of the single-electron Hamiltonian of individ-
ual atoms, are commonly used due to their localized nature
and clear chemical meaning. Atomic orbital basis is a non-
orthogonal basis since atomic orbitals belonging to different
atoms are in general non-orthogonal to each other. In elec-
tron transport simulation, the locality of the basis set in real
space is especially essential since it permits us to partition
the matrices into blocks corresponding to lead or device re-
gions. Although there exist relatively localized orthogonal ba-
sis sets such as the wavelet basis25–27 and the localized molec-
ular orbitals28, 29 (Wannier functions30, 31) commonly used in
linear scaling methods, they are certainly not as localized as
atomic orbitals and they often extend over several atoms.

Applying formalism derived in orthogonal basis to the
case of non-orthogonal basis is not straightforward due to
the lead-device basis overlap. The lead-device basis overlap
leads to a significantly different expression for the self-energy
and complicates the derivation. For steady state (energy-
domain) calculation, the Laudauer formula remains the same
in terms of the self-energies and device Green’s function but
we have to take into account the overlap matrix when calcu-
lating the self-energies and Green’s functions.32–36 For time-
domain simulation, the extension to non-orthogonal basis is
less straightforward. Also, due to the overlap among the ba-
sis sets in different sub-regions, there is ambiguity in defin-
ing the number of electrons in each sub-regions and so does
the current.37, 38 A common practice to deal with the prob-
lem of non-orthogonal basis is to do some kinds of basis

0021-9606/2013/139(22)/224111/12/$30.00 © 2013 AIP Publishing LLC139, 224111-1
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transformation before partitioning the system. One may trans-
form the whole system to orthogonal basis18 but this has to be
done with care so that the periodicity of the lead is preserved
and the basis set remains as localized as possible. Another
way to avoid the lead-device overlap is to transform the ba-
sis associated with the device region to another one that is
orthogonal to the lead basis.39

In this paper, we attempt to solve the problem by ex-
amining the property of self-energy in non-orthogonal basis
and extending the TDDFT-NEGF-HEOM formalism to non-
orthogonal basis so that the atomic orbital basis can be di-
rectly used in time-dependent simulation.

This paper is organized as follows: first, we derive the
RSDM based HEOM in non-orthogonal basis. Second, we
show that our results are equivalent to a lead-device orthog-
onalization (i.e., making the basis in device region orthogo-
nal to the basis in the leads). Third, details of implementation
are outlined and results are presented to confirm our method.
Finally, the computational complexity as well as memory re-
quirement will be discussed.

II. THEORY

Under the TDDFT formalism, we follow the dynamics of
a non-interacting reference system with the Hamiltonian

H (t) =
N∑

i=1

h(�ri, t) =
N∑

i=1

(
−1

2
∇i

2 + υKS(�ri, t)

)
, (1)

where υKS(�r, t) = υext (�r, t) + υH (�r, t) + υxc(�r, t) is the ef-
fective Kohn-Sham potential including external potential,
mean field electron-electron repulsion as well as exchange-
correlation (XC) potential. In principle, given the exact XC
functional, this reference system will evolve in a way that pro-
duces the exact electron density ρ(�r, t) according to Runge-
Gross theorem.40 We expand our reference system by a
non-orthogonal atomic basis set {χμ} such that the Kohn-
Sham Fock matrix in covariant representation is given by hμν

= 〈
χμ

∣∣ ĥ |χν〉. The reduced single-electron density matrix σμν

of the reference system is then defined as the contravari-
ant representation of the reduced single-electron density
operator

σ̂ =
∑
μν

σμν |χν〉〈χμ|. (2)

The RSDM for isolated system obeys the equation of motion

iSσ̇ (t)S = h(t)σ (t)S − Sσ (t)h(t), (3)

where Sμν = 〈χμ | χν〉 is the overlap matrix, the covariant
representation of identity matrix in a non-orthogonal ba-
sis. In orthogonal basis, this equation of motion reduces to
iσ̇ (t) = [h(t), σ (t)].

In quantum transport simulation, we are interested in the
particular lead-device-lead set up as shown in Fig. 1. We
would like to follow the evolution of the device region while
the leads are treated as environment. Since our system is ex-
panded by a localized basis set, we can partition all the matri-
ces into blocks corresponding to the respective regions in real

FIG. 1. Schematic diagram showing the partitioning of entire system into
three regions: left-lead, device, and right lead.

space. For instance,

h =

⎡
⎢⎣

hL hLD 0

hDL hD hDR

0 hLD hR

⎤
⎥⎦ ,

where L, R, and D denote the left lead, right lead, and device,
respectively. We assumed that different leads do not couple
directly with each other, thus hLR = SLR = 0. It is noted that
the matrices hL, hR , etc., are of infinite dimension represent-
ing the semi-infinite leads which contain infinite degree of
freedom. Therefore, deriving the equation of motion for σD(t)
is an open system problem.

A. NEGF in non-orthogonal basis

The equation of motion for σD(t) can be derived based
on the Keldysh’s NEGF formalism, in which σD(t) is equiv-
alent to the lesser Green’s function G<

ij (t, t ′) = i
〈
aj†(t ′)ai(t)

〉
at t = t′, where ai†(t), ai(t) are the Heisenberg creation and an-
nihilation operators in duel basis (see Appendix A for details),

σD(t) = − iG<
D(t, t). (4)

With Dyson’s equation and analytical continuation rules
of Langreth, the equation of motion for G<

D(t, t ′) is shown to
be

iSD

∂

∂t
G<

D(t, t ′) = hD(t)G<
D(t, t ′)

+
∑

α

∫ ∞

−∞
dτ

[
�r

α(t, τ )G<
D(τ, t ′)

+�<
α (t, τ )Ga

D(τ, t ′)
]
. (5)

The superscripts r, a, <, > indicate the retarded, advanced,
lesser, and greater component of the non-equilibrium Green’s
function or self-energies. And the self-energies describing the
coupling and overlapping with lead α are given by

�x
α(t1, t2)

=
(

hDα(t1) − iSDα

−→
∂

∂t1

)
gx

α(t1, t2)

(
hαD(t2) − iSαD

−→
∂

∂t2

)

=
(

hDα(t1) − iSDα

−→
∂

∂t1

)
gx

α(t1, t2)

(
hαD(t2) + iSαD

←−
∂

∂t2

)
,

(6)

where x = r, a, <, > and
←−
∂
∂t

,
−→
∂
∂t

denote the left and right
derivatives, respectively. The small letter g(t, t ′) is the bare
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Green’s function for a corresponding uncoupled system in
which the leads and device region are isolated from each oth-
ers, i.e., SDα, hDα = 0.

The 1st equality in Eq. (6) is obtained by partitioning the
Dyson’s equation and its derivation is similar to the derivation
in energy-domain presented in Ref. 33. For the 2nd equality,
since g(t, t′) vanish when t or t′ → ±∞, using integration by
parts, we can show that converting a left/right derivative to an-
other with an negative sign keeps the self-energy unchanged
as a distribution. And Fourier transform of either form results
in �r

α(E) = [ESDα − hDα] gr
α(E) [ESαD − hαD].

We then follow the common assumption that the time-
dependent bias voltage 
α(t) only causes a rigid homoge-
neous shift to the potential in the lead region as well as
near the lead-device interface. In this case, the transient self-
energy is simply the ground/equilibrium self-energy pick-
ing up a time-dependent phase factor exp[i

∫ t

t ′ dτ
α(τ )] (see
Appendix B for details),

�<,>
α (t, t ′) = �<,>

α (t − t ′)ei
∫ t

t ′ dτ
α(τ ), (7)

where �<,>
α (t − t ′) is the ground/equilibrium self-energy

which depends only on the time difference t − t′. We define
the energy-resolved self-energy as

�<,>
α (ε, t, t ′) = �<,>

α (ε)eiε(t−t ′)ei
∫ t

t ′ dτ
α(τ ), (8)

which follows the same equation of motion as in orthogonal
basis:

i
∂

∂t
�<,>

α (ε, t, t ′) = [ε + 
α(t)] �<,>
α (ε, t, t ′). (9)

After deriving the equation of motion for energy-
resolved lesser/greater self-energy, we now turn to the re-
tarded/advanced self-energy. We would like to relate them to
the broadening matrix �α(t, t ′) = i

[
�>

α (t, t ′) − �<
α (t, t ′)

]
,

of which the equation of motion is known.
By putting gr

α(t, t ′) = θ (t − t ′)
[
g>

α (t, t ′) − g<
α (t, t ′)

]
into the expression of �

r/a
α (t, t ′) in Eq. (6) and after some

rearrangement, we obtain

�r
α(t, t ′) = δ(t − t ′)�δ

α(t, t ′) + δ(1)(t − t ′)�δ′
α (t, t ′)

− iθ (t − t ′)�α(t, t ′),
(10)

where δ(t − t′) is the Dirac delta function, δ(1)(t − t′) is the
distributional derivative of delta function, and θ (t − t′) is the
Heaviside step function which is equal to one for any t > t′

and otherwise zero. �δ(t, t ′),�δ′
(t, t ′) are defined as

�δ
α(t, t ′) = −SDα Aα(t, t ′)hαD(t ′) − hDα(t)Aα(t, t ′)SαD

+2iSDα

∂

∂t
Aα(t, t ′)SαD,

�δ′
α (t, t ′) = iSDα Aα(t, t ′)SαD, (11)

Aα(t, t ′) = i
[
g>

α (t, t ′) − g<
α (t, t ′)

]
.

It is noted that the first two terms in the right hand side of
Eq. (10) are present only when there is a non-zero lead-device
overlap SDα . In orthogonal basis, retarded self-energy simply
satisfies �r

α(t, t ′) = −iθ (t − t ′)�α(t, t ′). These two terms ap-
pear due to the presence of time derivatives in expression of

self-energy in Eq. (6). When we apply time derivative on the
Heaviside step function θ (t − t′), a Dirac delta function comes
out and a further derivative on δ(t − t′) results in δ(1)(t − t′).
And the presence of these two terms lead to a more gener-
alized form of Kramer Kronig relation for the retarded self-
energy in energy domain (see Appendix C for details).

From now on, we denote �̃r
α(t, t ′) = −iθ (t − t ′)�α

(t, t ′), which behaves ordinarily as the retarded self-energy
in orthogonal basis. Then, we put Eq. (10) into Eq. (5) to ob-
tain the equation of motion for G<

D(t, t ′) in terms of �̃r
α(t, t ′).

Rearrange, we have

i S̃D

∂

∂t
G<

D(t, t ′) = h̃D G<
D(t, t ′)

+
∑

α

∫ ∞

−∞
dτ

[
�̃r

α(t, τ )G<
D(τ, t ′)

+�̃<
α (t, τ )Ga

D(τ, t ′)
]
. (12)

The tilde quantities are defined by

S̃D = SD −
∑

α

�1
α,

h̃D(t) = hD(t) +
∑

α

�0
α(t),

�̃r,a
α (t, t ′) = ±iθ (±t ∓ t ′)�α(t, t ′),

�̃<,>
α (t, t ′) = �<,>

α (t, t ′),

(13)

where �0
α(t) and �1

α are

�0
α(t) = SDα S−1

α hα(t)S−1
α SαD

−SDα S−1
α hαD(t) − hDα(t)S−1

α SαD,

(14)
�1

α = SDα S−1
α SαD.

The equation of motion for G<
D(t, t ′) in non-orthogonal ba-

sis, taken into account the lead-device overlap, looks almost
the same except that the overlap matrix, Fock matrix, and
self-energies are replaced by the “effective” ones. It is worth
noting that S̃−1

D is indeed the DD-block (the diagonal block
corresponding to the device region) of the inverse of overlap
matrix of the whole infinite system:

S̃−1
D =

(
SD −

∑
α

SDαS−1
α SαD

)−1

= (
S−1

)
DD

. (15)

Thus �1
α is like a “self-energy” for the overlap matrix added to

ensure the same anti-commutation relation in device region:
{ai, aj †} = (S−1)ij = (S̃−1

D )ij for i, j ∈ D. In practice, numer-
ical calculation of �0

α(t) and �1
α is not an easy task and the

details will be discussed in Appendix C.
Equations (9) and (12) are the central equations for de-

riving RSDM based HEOM in non-orthogonal basis. Plug-
ging them into i ˙σD(t) = [

∂
∂t

G<
D(t, t ′) + ∂

∂t ′ G
<
D(t, t ′)

]∣∣
t=t ′ , the

RSDM based HEOM in non-orthogonal basis are then
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obtained,

i S̃Dσ̇D(t)S̃D = h̃D(t)σD(t)S̃D − S̃DσD(t)h̃D(t)

−
∑

α

(
S̃Dϕα(t) − ϕα

†(t)S̃D

)
, (16)

i S̃Dϕ̇α(ε, t) = [h̃D(t) − S̃D (ε + 
α)]ϕα(ε, t)

+[fα(ε) − S̃DσD(t)]�α(ε)

+
∑
α′

∫
dε′ ϕα,α′ (ε, ε′, t), (17)

iϕ̇α,α′ (ε, ε′, t) = [
ε′ + 
α′(t) − ε − 
α(t)

]
ϕα,α′ (ε, ε′, t)

+�α′(ε′)ϕα(ε, t) − ϕ
†
α′(ε′, t)�α(ε), (18)

where fα(ε) = f(ε − μα) is the Fermi distribution in lead α

in equilibrium. ϕα(ε, t) and ϕα,α′ (ε, ε′, t) are the 1st and 2nd

tier auxiliary reduced single-electron density matrices (AR-
SDM) which are defined as follows. It is noted that in terms
of lesser/greater self-energies, the definition of the ARSDM,
Eqs. (20) and (22), is exactly the same as their definition in
orthogonal basis:

ϕα(ε, t) = −i

[∫
C

dτ GD(t, τ )�̃α(ε; τ, t)

]<

(19)

= i

∫ t

−∞
dτ

[
G<

D(t, τ )�>
α (ε; τ, t) − G>

D(t, τ )�<
α (ε; τ, t)

]
, (20)

ϕα,α′ (ε, ε′, t) = −i

[∫
C

dτ1

∫
C

dτ2�̃α′(ε′; t, τ1)GD(τ1, τ2)�̃α(ε; τ2, t)

]<

(21)

= i

∫ t

−∞
dτ1

∫ t

−∞
dτ2

[
�>

α′(ε′; t, τ1) − �<
α′ (ε′; t, τ1)

] [
G<

D(τ1, τ2)�>
α (ε; τ2, t) − G>

D(τ1, τ2)�<
α (ε; τ2, t)

]

+ i

∫ t

−∞
dτ1

∫ t

−∞
dτ2

[
�<

α′(ε′; t, τ1)Ga
D(τ1, τ2)�>

α (ε; τ2, t) − �>
α′ (ε′; t, τ1)Ga

D(τ1, τ2)�<
α (ε; τ2, t)

]
. (22)

B. An alternative way: Lead-device orthogonalization

In this section, we will show that the above result can be
obtained in another way: by a block diagonalization of the
overlap matrix. We start by seeking a basis transformation
χ̃ = Uχ upon which the overlap between basis in device and
lead regions vanishes, i.e., S̃Dα = S̃αD = 0, while keeping the
basis {χL,χR} in lead region unchanged so that the locality
of basis as well as periodicity in lead region is preserved:

χ̃ =
⎡
⎣ χL

χ̃D

χR

⎤
⎦ =

⎡
⎣ I 0 0

UDL UDD UDR

0 0 I

⎤
⎦
⎡
⎣ χL

χD

χR

⎤
⎦ , (23)

S̃ = U SUT =
⎡
⎣ SL 0 0

0 S̃D 0
0 0 SR

⎤
⎦ ,

h̃ = U hUT =
⎡
⎣ hL h̃LD 0

h̃DL h̃D h̃DR

0 h̃RD hR

⎤
⎦ .

(24)

There are many kinds of transformations which satisfy this
requirement, one of which has already been suggested by
Thygesen utilizing the duel basis.39 In that case, the trans-
formation is given by UDL = (S−1)DL, UDD = (S−1)DD,

UDR = (S−1)DR such that the device region is now expanded
by the duel basis. Here, we will choose another one by setting

UDD = I . After some linear algebra, we find

U =
⎡
⎣ I 0 0

−SDLS−1
L I −SDR S−1

R

0 0 I

⎤
⎦ . (25)

The transformed overlap and Fock matrices are

S̃D = SD −
∑

α=L,R

SDα S−1
α SαD,

h̃D = hD +
∑

α=L,R

[
SDα S−1

α hα S−1
α SαD

− SDα S−1
α hαD − SDα S−1

α hαD

]
,

h̃Dα = hDα − SDα S−1
α hα.

(26)

The transformed matrices S̃D and h̃D are exactly what
we obtained in Sec. II A. (Therefore, we denote them with the
same notation.) Also, since hα remains unchanged, so does
the surface Green’s function and one can check that the re-
tarded (or advanced) self-energy in the new basis is exactly
the �̃r,a

α in Sec. II A,

�̃r,a
α (E) = h̃Dα gr,a

α (E)h̃αD

= �r,a
α (E) − �0

α − �1
αE.

(27)
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Furthermore, the transformed RSDM σ̃ = U−T σU−1 (as
well as the Green’s functions) for the device region remains
unchanged. This is a consequence of choosing UDD = I and
this means that propagation of this transformed system results
in exactly the same DD-block of RSDM and Green’s func-
tions

σ̃D = σD, (28)

σ̃ αD = σ αD + S−1
α SαDσD, (29)

σ̃ α = σ α + σ αD SDα S−1
α + S−1

α SαDσDα

+S−1
α SαDσD SDα S−1

α . (30)

We can then derive the HEOM of σD(t) in this transformed
basis, which is straightforward because this can be done with-
out having to take into account the lead-device basis overlap.
The resulting HEOM are exactly the same as the HEOM we
derived in Sec. II A (Eqs. (16)–(18)). This means that our pre-
vious approach to include the lead-device basis overlap into
the self-energy is equivalent to this lead-device orthogonal-
ization. Of course, we will not carry out this lead-device or-
thogonalization in practice since the matrices are infinite in
size. Instead, we propagate the HEOM derived in Sec. II A.

C. Time-dependent current

The particle current passing through the lead-device in-
terface can be defined by the derivative of number of electrons
in lead region Jα(t) = −e d

dt
Nα(t), where e is the electron

charge. However, in non-orthogonal basis, there is ambiguity
in defining the number of electrons Nα(t) in each subspaces
due to the lead-device overlap and this has been discussed
by Viljas et al.37 This is similar to the problem of assigning
bonding electrons to individual atoms in Mulliken population
analysis. Here, we start by defining Nα(t) as the integral of
density over the real space belonging to the lead α and derive
the transient current formula in terms of the RSDM,

Nα(t) =
∫

�r∈α

dr3ρ(�r, t)

=
∑
i,j

σij (t)
∫

�r∈α

dr3χ∗
j (�r)χi(�r)

≈ tr [σ α(t)Sα] + 1

2
tr [σ αD(t)SDα + σDα(t)SαD]

= tr [σ α(t)Sα] + Re [tr [σ αD(t)SDα]] . (31)

The third step utilizes the locality of basis and equiparti-
tions the off-diagonal density to lead and device regions. The
equipartition is justified by the fact that we include part of the
electrodes into the device region (recall Fig. 1),

∑
i,j∈D

σij (t)
∫

�r∈α

dr3χ∗
j (r)χi(r) ≈ 0, (32)

∑
k∈α,j∈D

σkj (t)
∫

�r∈α

dr3χ∗
j (r)χk(r)

≈
∑

k∈α,j∈D

σkj (t)
∫

�r∈D

dr3χ∗
j (r)χk(r)

≈ 1

2
tr [σ αD(t)SDα] . (33)

From the equation of motion of RSDM in Eqs. (16)–(18), it
can be shown that the trace of the 1st tier ARSDM counts the
time-derivative of the number of electrons in the lead in the
transformed basis, i.e., 2 tr

[
Imϕα(t)

] = tr
[

d
dt

σ̃ αα(t)Sαα

]
.

With Eq. (30), we can show that the transient current is given
by

Jα(t) = −e tr
[
2Imϕα(t) − Reσ̇ αD(t)SDα − σ̇D(t)�1

α

]
.

(34)
The only problem here is that we do not know what σ αD(t)
are (α = L, R). Following their time evolution is dif-
ficult and computationally expensive because they are in
principle matrices of infinite size. However, since the term
tr[Reσ αD(t)SDα] corresponds to the bonding electrons near
the lead-device interface, its contribution to the current should
be insignificant. Otherwise, there will be a change in the
chemical bonds inside the electrodes, which are assumed to
be always in equilibrium. Therefore, in practical calculation,
one may simply neglect this term. But here, in our implemen-
tation, we try to approximate this term by including at least
two principal layers of the electrodes in the device region so
that we can approximate σLD(t) and σRD(t) by the first and
last off-diagonal block of σD(t), respectively, i.e.,

σkL,i(t) ≈ σkL+NL,i+NL
(t), (35)

σkR,i(t) ≈ σkR−NR,i−NR
(t), (36)

where NL/R are the number of orbitals in a principal layer of
the left/right lead, kL/R ∈ L/R and i, i ± NL/R, kL/R ± NL/R ∈ D.

Although the transient current formula in non-orthogonal
basis in Eq. (34) looks complex, it is clear that the current
formula reduces to the Landauer formula in the steady state
limit because both σ̇ αD(t) and σ̇D(t) equal to zero in steady
state due to the translational invariance in time. The Landauer
formula can then be obtained by Fourier transforming Eq. (20)
to the energy-domain.

III. NUMERICAL IMPLEMENTATION

We implemented the above TDDFT-NEGF-HEOM for-
malism with the Lorentzian-Padè decomposition scheme.23

Under this scheme, we approximate the broadening matrix
�α(ε) by a bunch of Lorentzian functions and the Fermi-
Dirac distribution by Padè spectrum decomposition.41 Padè
spectrum decomposition serves as an efficient way to decom-
pose the Fermi distribution in numerical implementation so
that the number of energy-resolved self-energy is minimized.
It has been shown that Padè spectrum decomposition con-
verges much faster than other schemes such as Matsubara
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expansion,41

�α(ε) ≈
Nd∑
d=1

wd
2

(ε − �d )2 + wd
2
�̄α,d , (37)

f (ε − μ) ≈ 1

2
−

∑
p

(
Rp

ε − μ + izp

+ Rp

ε − μ − izp

)
.

(38)
The lesser/greater self-energy �<,>

α (t, t ′) can then be written
as a summation form by residue theorem. For t < t′, it is a
summation of residues in the upper half complex plane. For t
> t′, it is a summation of residues in the lower half complex
plane,

�<,>
α (t, t ′) = i

2π

∫ ∞

−∞
dε f <,>

α (ε)�α(ε)eiε(t ′−t)ei
∫ t ′
t

dτ 
α(τ ),

=

⎧⎪⎨
⎪⎩

∑
k

A<,>+
α,k eiεα,k(t ′−t)ei

∫ t ′
t

dτ 
α(τ ) (t < t ′)∑
k

A<,>−
α,k eiε∗

α,k(t ′−t)ei
∫ t ′
t

dτ 
α(τ ) (t > t ′)
,

(39)

where f <
α (ε) = fα(ε) is the Fermi-Dirac distribution for

lead α, f >
α (ε) = 1 − fα(ε), εα, k are the poles of �α(ε) and

f <,>
α (ε) on the upper half complex plane. ε∗

α,k are the com-
plex conjugate of εα, k, the poles on the lower half complex
plane. For poles of �α(ε),

εα,d = �d + iWd,

A<,>+
α,d = ±i

wd

2
�̄α,df

<,>(εα,d − μα),

A<,>−
α,d = ±i

wd

2
�̄α,df

<,>(ε∗
α,d − μα).

(40)

For poles of f <,>
α (ε),

εα,p = μα + izp,

A<,>+
α,p = Rp�α(εα,p),

A<,>−
α,p = Rp�α(ε∗

α,p).

(41)

The energy-resolved self-energy can then be redefined as:

�
<,>
α,k (t, t ′) = A<,>±

α,k eiεα,k (t ′−t)ei
∫ t ′
t

dτ 
α(τ ), where ± depends
on whether t < t′ or t > t′. And we can then rewrite the energy-
integral in HEOM (Eqs. (16)–(18)) into a summation form,

i S̃Dσ̇D(t)S̃D = h̃D(t)σD(t)S̃D − S̃DσD(t)h̃D(t)

−
∑
α,k

(S̃Dϕα,k(t) − ϕα,k
†(t)S̃D),

i S̃Dϕ̇α,k(t) = [h̃D(t) − S̃D(εα,k + 
α(t))]ϕα,k(t)

−[i A<+
α,k + S̃DσD�α,k]

+
∑
α′k′

ϕαk,α′k′(t), (42)

iϕ̇αk,α′k′(t) = [ε∗
α′,k′ + 
α′ (t) − εα,k − 
α(t)]ϕαk,α′k′(t)

+�α′,k′ϕα,k(t) − ϕ
†
α′,k′(t)�α,k,

where �α,k = i[A>+
α,k − A<+

α,k ] = i[A>−
α,k − A<−

α,k ].

Our numerical implementation is then simple.

1. The equilibrium Kohn-Sham Fock matrix is obtained by
self-consistent field calculation.

2. Retarded self-energy �r
α(E) is calculated and its imagi-

nary part is expanded with Lorentzian functions by least
square regression.

3. Initial values (equilibrium values) of σD ,ϕα,k and
ϕαk,α′k′ are solved by NEGF techniques.

4. Runge-Kutta 4th order method is used to propagate the
HEOM in Eqs. (42). Current Jα(t) is evaluated using
Eq. (34).

Technical details including calculation of S̃D , h̃D(t) and
the initial values are discussed in Appendices C and D.

IV. RESULTS

To demonstrate our method, we simulated two simple
system: a one-dimensional carbon chain and a carbon chain-
benzene-carbon chain (C-benzene-C) system as shown in
Fig. 2. The linear C-chain system is simulated at TDDFT
level while the C-benzene-C system is simulated at density
functional tight-binding (DFTB) level, which is an approx-
imated DFT method derived from the second-order expan-
sion of DFT Kohn-Sham energy respect to charge density
fluctuation.42, 43 These two systems are both connected to car-
bon chain electrodes but differ in the device region. And while
results can be shown for both systems with both methods,
here we only show TDDFT results for the first system and
DFTB results for the second one for demonstration purpose.
For TDDFT simulation, the minimal basis set STO-3G is used
and adiabatic local-density approximation44 is adopted as the
XC functional. The electronic temperature is set at 300 K and
50 terms are used in Padè decomposition of Fermi-Dirac dis-
tribution to achieve an accuracy of 10−7 within the energy
range [μ − 32 eV, μ + 32 eV]. The system is initially in the
equilibrium state and a time-dependent bias voltage is ap-
plied, driving the system out of equilibrium.

We apply least square regression to fit �α(E) of the car-
bon chain electrode with a total number of 63 Lorentzian
functions. Figure 3 shows the accurate and fitted self-energies.
The real part of fitted �r

α(E) is calculated with Eq. (C5) in
Appendix C. We can see a good agreement between the ac-
curate and fitted self-energies, showing the applicability of
Lorentzian expansion. Figure 4 shows the transmission co-
efficient of (top) linear C-chain and (bottom) C-benzene-C
system at equilibrium calculated exactly with standard NEGF
techniques, with self-energies fitted with Lorentzian functions
and with the WBL approximation.45 To show the details near
Fermi level clearly, we replot the graphs with enlarged energy

FIG. 2. Structure of (top) linear C-chain and (bottom) C-benzene-C system.
The C–C bond length and C–H bond length are 1.42 Å and 1.08 Å, respec-
tively.
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FIG. 3. Accurate and fitted retarded self-energy. For simplicity, only the first five diagonal elements (corresponding to the 1s, 2s, 2px, 2py, and 2pz orbitals of
the first carbon atom) are shown. Top two figures show the (a) real part and (b) imaginary part of the accurate retarded self-energy �r

α(E) against E (in the unit
of eV). Similarly, bottom figures are the self-energy approximated by a sum of Lorentzian functions.

scale and they are shown in the right panel. Again, the exact
and fitting results coincide very well. For the WBL case, the
self-energies are assumed to be independent of energy, with
their values taken at the Fermi level, i.e., �r

α(E) = �r
α(μα).

The transmission spectra calculated with WBL are more os-
cillatory and they are only accurate within a certain energy
range near the Fermi level.

A. Linear carbon chain

Figure 5 shows the time-dependent current through the
C-chain under source-drain voltage 1 V, 2 V, and 4 V.
The voltage is switched on exponentially 
R,L = ±V0(1 −
e−t/τ ), where τ is fixed at 1 fs. The blue solid curves
are calculated using HEOM approach with Lorentzian Padè
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FIG. 4. Transmission coefficient for C-chain (top panel) and C-benzene-C (bottom panel) system at V = 0. (Red: transmission calculated exactly; green: with
Lorentzian-fitted self-energy; and blue: with WBL approximation.) Right panel shows the plot with enlarged energy scale.
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FIG. 5. Time-dependent current through the right lead JR(t) in the linear
C-chain system. The voltage applied is 
R,L = ±V0(1 − e−t/τ ), where
τ = 1 fs, V0 = 0.5 V, 1 V, and 2 V.

decomposition scheme presented in this article. The green
dashed curves are calculated using HEOM approach with
the WBL approximation.22 The red dotted horizontal lines
are the steady state current calculated by Landauer formula
from non-WBL self-consistent calculation. The good agree-
ment between the steady state currents obtained from self-
consistent calculation (dotted curves) and time-dependent
simulation (solid curves) validates the correctness of our
method and verifies our scheme as beyond the WBL.

Figure 6 presents the transient current when we switch
on the voltage with different time constant τ , with the fi-
nal source-drain voltage fixed at 1 V. Again, comparison
with WBL calculation is made. It can be seen that the non-
WBL and WBL calculations agree well when the voltage is
switched on slowly. For fast switch-on, non-WBL calculation
gives more oscillatory transient current. This is because the
time-dependent self-energies in non-WBL calculation consist
of many components oscillating with different frequencies
(Eq. (39)). For the case where V0 = 0.5 V and τ = 0.1 fs, we
also checked the time-dependent current contributed from the
term tr[Reσ̇ αD(t)SDα], which is approximated by the method
discussed in Sec. II C. Its contribution never exceeds 0.3 μA
throughout the simulation and is thus negligible.
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FIG. 6. Time-dependent current through the right lead JR(t) in the lin-
ear C-chain system. The voltage applied is 
R,L = ±V0(1 − e−t/τ ), where
V0 = 0.5 V, τ = 0.1 fs, 0.5 fs, and 1.0 fs.
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FIG. 7. Time-dependent current through the right lead JR(t) in the
C-benzene-C system. The voltage applied is 
R,L = ±V0(1 − e−t/τ ), where
τ = 0.1 fs, V0 = 0.5 V, 1 V, and 2 V.

B. C-benzene-C system

For the C-benzene-C system, the device region consists
of the benzene ring together with 11 carbons of the car-
bon chain on each side. This time, the simulation is done
at DFTB level. Figure 7 shows the time-dependent current at
different voltage. Again, good agreement is obtained between
non-WBL HEOM and self-consistent steady state calculation.
Figure 8 shows the time-dependent current through our sys-
tem given a time-dependent voltage in sinusoidal form. In
both figures, the time-dependent current under WBL approx-
imation agrees pretty well with the non-WBL results qualita-
tively even under large voltage or high frequency ac voltage.
This indicates that the linear C-chain electrode behaves very
well as a wide-band conductor.

V. COMPUTATIONAL COMPLEXITY

The computational complexities of propagating differ-
ent tiers of the HEOM are different. Consider a typical two-
terminal system, one can order the orbitals in a way that the
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FIG. 8. Time-dependent current through the right lead JR(t) in the
C-benzene-C system. The voltage applied is 
R(t) = −
L(t) = V0
(1 − cos(2πt/T )), where V0 = 0.5 V, T = 1 fs (top) and 2 fs (bottom), re-
spectively. The blue dotted curves correspond to voltage on the right lead
VR(t).
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FIG. 9. Locality of the matrices: (a) hD(t),σD(t); (b) self-energies �α ; (c)
1st tier ARSDM ϕα(t); and (d) 2nd tier ARSDM ϕα,α′ (t) for α, α′ ∈ {L, R}.

self-energy due to lead-device coupling is localized on top-
left or bottom-right corner. Let σD, hD be ND × ND matri-
ces while the actual size of the self-energies are N� × N� .
The sizes of 1st tier and 2nd tier ARSDM are ND × N� and
N� × N� , respectively (shown in Fig. 9). This can be seen
from their definitions in Eqs. (20) and (22). The locality of
ARSDM keeps unchanged under time propagation, which can
be checked from the HEOM.

As a result, the memory requirement for storing
the RSDM and ARSDM is given by O(ND

2 + NDN�Nk

+ N�
2Nk

2), where Nk is the number of poles in the
Lorentzian-Padè decomposition scheme. And the computa-
tional complexities for propagating RSDM, 1st and 2nd tier
ARSDM are O(ND

3),O(NkND
2N�),O(Nk

2N�
3), respec-

tively. The computational time for propagating the 2nd tier
ARSDM depends only on Nk,N� , which is determined by
the nature of electrodes but not the device. Figure 10 shows
computational time for propagating each tier of the HEOM
for a single time step of the carbon chain in logarithmic scale.
It can be seen that, for short devices, where ND � NkN� , the
computational time is dominated by the propagation of 2nd

tier and is insensitive to the change of ND. When the length of
the device becomes long, where ND � NkN� , propagation of
RSDM dominates and it scales as O(ND

3).
Finally, we note that the localized structures of the AR-

SDM come from the localized non-orthogonal atomic orbital
basis we used. Orthogonalizing the basis would result in a
denser Fock matrix and more delocalized ARSDM. But on
the other hand, orthogonalizing the basis simplifies the equa-
tions of motion since the overlap matrix becomes a unity.
Therefore, in terms of computational performance, there are
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FIG. 10. Computational time for propagating each tier of the HEOM for a
single time step versus the size of device in logarithmic scale.

no clear advantages for orthogonalizing the system over using
the non-orthogonal basis directly and vice versa.

VI. SUMMARY

In this work, we extend the RSDM based HEOM for-
malism to the case of a non-orthogonal basis so that it is
directly implementable with first principles TDDFT with non-
orthogonal atomic orbital basis. The formalism is imple-
mented with TDDFT as well as TDDFTB and simulation
results are presented. The Lorentzian-Padè decomposition
scheme, in which the linewidth matrix is fitted with multi-
Lorentzian functions rather than an energy-independent con-
stant, is applied to expand the time dependent self-energy as
a sum of different frequency components. Therefore, it is a
scheme beyond the WBL approximation. Good agreement is
achieved between the transmission calculated with accurate
and fitted self-energies, respectively, which confirms the fea-
sibility of fitting the linewidth function with multi-Lorentzian
functions. Simulations also show good agreement between the
steady state current obtained by time-dependent simulation
and self-consistent steady state calculation, which confirm the
validity of our method. However, readers are reminded that
reaching of steady state is not guaranteed in general. There
are possibilities of existence of multiple steady states or dy-
namic steady state.46–48 After validating our method, compar-
ison with WBL approximation is then made. The WBL results
agree well with the non-WBL results when the applied volt-
age is small and switched on slowly. For large voltage or fast
switch on, the transient current in non-WBL calculation gen-
erally shows more oscillation.

Finally, the sparsity of the matrices is discussed and
computational complexity for propagating the correspond-
ing equations of motion are demonstrated. Compared with
the RSDM based HEOM approach with WBL approxima-
tion which terminates at the 1st tier, the non-WBL HEOM
require propagation of N2

αN2
k 2nd tier ARSDM ϕαk,α′k′(t). For-

tunately, the 2nd tier ARSDM are sparse matrices with actual
size N� × N� . Thus the computational cost and memory re-
quirement due to the introduction of 2nd tier ARSDM are con-
stant with respect to the length of the device. And with the
Lorentzian-Padè decomposition scheme, the number of ex-
pansion Nk only depends on temperature and the complexity
of linewidth function. Thus the computational cost scales lin-
early with respect to the simulation time. So this RSDM based
TDDFT-NEGF-HEOM approach is efficient in simulating the
time-dependent response of realistic molecular devices.
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APPENDIX A: MATRIX REPRESENTATION
IN NON-ORTHOGONAL BASIS

In this section, we give a brief introduction on duel basis
and matrix representations in non-orthogonal basis. Given any
basis set |χμ〉, it is known that we can construct a unique duel
basis |χμ〉 which fulfills

〈χμ | χν〉 = 〈χμ | χν〉 = δμν. (A1)

In particular, if |χμ〉 is a finite basis, its duel basis is given by

|χμ〉 =
∑

ν

(S−1)μν |χν〉 , (A2)

where Sμν = 〈χμ | χν〉. And the completeness relation is writ-
ten as ∑

μ

|χμ〉〈χμ| =
∑
μν

|χμ〉(S−1)μν〈χν | = I. (A3)

In non-orthogonal basis, there are three different ways to
represent an operator by a matrix. They are given by

Hμν =〈χμ|Ĥ |χν〉,
Hμν =〈χμ|Ĥ |χν〉,
Hμ

ν =〈χμ|Ĥ |χν〉.
(A4)

They are known as the covariant, contravariant, and
mixed representation, respectively. They are related to
each other simply by the overlap matrix, for instance,
Hμν = ∑

δγ

SμδH
δγ Sγ ν . Therefore, they are equivalent in or-

thogonal basis. And one can show that they can be defined
alternatively as

Ĥ =
∑
μν

Hμν |χμ〉〈χν |,

Ĥ =
∑
μν

Hμν |χμ〉〈χν |,

Ĥ |χν〉 =
∑

μ

Hμ
ν |χμ〉.

(A5)

Throughout this paper, contravariant representation is
used for the RSDM and Green’s function while covariant rep-
resentation is used for all other operators. This is a natural
choice because under this convention, the matrix elements of
operators, e.g., Aμν = 〈

χμ

∣∣ Â |χν〉 , as well as their expecta-
tion values, e.g., 〈A〉 = tr [σ A], can be evaluated as usual.

In the language of second quantization, as we will see, it
is more convenient to express the Green’s function and other
operators in terms of the creation and annihilation operator
in duel basis aμ† (aμ) which creates (destroys) an electron in
|χμ〉. They obey the anti-commutation relation

{ai, aj †} = (S−1)ij . (A6)

Any operator in covariant representation is then expressed as

ĥ(t) =
∑
μν

hμν(t)aμ†aν. (A7)

In Heisenberg picture, the creation and annihilation oper-
ators in duel basis are

aμ(t) = e
i
∫ t

t0
dτH (τ )

aμe
−i

∫ t

t0
dτH (τ )

,

aμ†(t) = e
i
∫ t

t0
dτH (τ )

aμ†e
−i

∫ t

t0
dτH (τ )

.

(A8)

The retarded, advanced, lesser, and greater Green’s function
are then defined as

Gr
μν(t, t ′) = −iθ (t − t ′)〈{aμ(t), aν†(t ′)}〉,

Ga
μν(t, t ′) = iθ (t ′ − t)〈{aμ(t), aν†(t ′)}〉,

G<
μν(t, t ′) = i〈aν†(t ′)aμ(t)〉,

G>
μν(t, t ′) = −i〈aμ(t)aν†(t ′)〉.

(A9)

Their equations of motion are given by

i

[
S

∂

∂t
− H(t)

]
Gr,a(t, t ′) = δ(t − t ′)I,

i

[
S

∂

∂t
− H(t)

]
G<,>(t, t ′) = 0.

(A10)

APPENDIX B: EFFECT OF TIME-DEPENDENT
VOLTAGE

In this section, we consider the effect of adding a time-
dependent bias voltage 
α(t) on each lead α. The time-
dependent Kohn-Sham Hamiltonian is written as

hij (t) = h0
ij +

∫
dr3δυKS(�r, t)χi

∗(�r)χj (�r), (B1)

where h0 is the equilibrium Kohn-Sham Fock matrix and
δυKS(�r, t) is the induced Kohn-Sham potential caused by the
bias voltage. We will assume the followings:

1. The electrodes are non-interacting, thus the exchange-
correlation potential is zero inside the leads as well as
for lead-device coupling.

2. The screening approximation: δυKS(�r, t) = 
α(t) for
any �r in the electrodes (thus in both the lead regions and
near the lead-device interfaces).

We will show that these two assumptions lead to the homoge-
neous rigid shift of the surface Green’s function and the self-
energy. It is noted that assumption (2) is justified by the fact
that we always include part of the electrodes in the device re-
gion. Now we have hij (t) = h0

ij + 
α(t)
∫

dr3χi
∗(�r)χj (�r) for

any i or j ∈ α, leading to

δυKS(t) =

⎡
⎢⎣

SL
L(t) SLD
L(t) 0

SDL
L(t) U(t) + δυXC(t) SDR
R(t)

0 SRD
R(t) SR
R(t)

⎤
⎥⎦ ,

(B2)

where U(t) is evaluated by solving the Poisson equation
∇2U (�r, t) = −4πρ(�r, t) and δυXC(t) is XC potential for the
device region.

With hα(t) = h0
α + Sα
α(t) and hDα(t) = h0

Dα

+ SDα
α(t), the energy-resolved surface Green’s func-
tion and self-energy at time t = t′ are equal to the equilibrium

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

147.8.204.164 On: Wed, 29 Oct 2014 03:02:28



224111-11 Kwok et al. J. Chem. Phys. 139, 224111 (2013)

ones homogeneously shifted by 
α(t),

g<,>
α (ε, t, t) = g<,>

α (ε − 
α(t), 0, 0),

�<,>
α (ε, t, t) = �<,>

α (ε − 
α(t), 0, 0).
(B3)

Integrating the equation of motion of g<,>
α (t, t ′), we have

g<,>
α (t, t ′) = g<,>

α (t − t ′) exp

[
i

∫ t

t ′
dτ
α(τ )

]
. (B4)

Plug it into the expression for self-energy (Eq. (6)), we find

�<,>
α (t, t ′) = �<,>

α (t − t ′) exp

[
i

∫ t

t ′
dτ
α(τ )

]
, (B5)

where g<,>
α (t − t ′) and �<,>

α (t − t ′) are the ground/
equilibrium surface Green’s function and self-energy.

APPENDIX C: EVALUATE S̃D AND h̃D

To propagate the HEOM in non-orthogonal basis, we
need to evaluate the “effective” overlap and Fock matrix, S̃D

and h̃D , which are related to the original ones, SD and hD , by

S̃D = SD −
∑

α

�1
α,

h̃D(t) = hD(t) +
∑

α

�0
α(t),

(C1)

where �0
α(t) and �1

α are defined as

�0
α(t) = SDα S−1

α hα(t)S−1
α SαD

−SDα S−1
α hαD(t) − hDα(t)S−1

α SαD,

(C2)
�1

α = SDα S−1
α SαD.

Since we have assumed hα(t) = h0
α + Sα
α(t) and

hDα(t) = h0
Dα + SDα
α(t) (see Appendix B), �0

α(t) can be
written alternatively as

�0
α(t) = �0

α − �1
α
α(t), (C3)

where �0
α is the equilibrium �0

α(t):

�0
α = SDα S−1

α h0
α S−1

α SαD

−SDα S−1
α h0

αD − h0
Dα S−1

α SαD. (C4)

Therefore, we only need to evaluate beforehand the time-
independent quantities �0

α and �1
α .

�1
α = SDα S−1

α SαD can be calculated using standard tech-
niques in evaluating the surface Green’s function.49 Calcula-
tion of �0

α is much more difficult since it involves solving the
surface block of the semi-infinite dimension matrix equation
Sα X Sα = hα . Fortunately, it can be estimated from the real
part of self-energy in energy-domain.

By doing a Fourier transform on Eq. (10) with respect to
(t − t′) → E, we can show that at equilibrium state, �r

α(E) is

given by

�r
α(E) = �0

α + �1
αE + 1

2π
P

∫ ∞

−∞
dE′ �α(E′)

E − E′ − i

2
�α(E),

(C5)
where P denotes the Cauchy principal value.

Because �α(E) is non-zero only within a finite range
of E, �r

α(E) → �0
α + �1

αE + O(1/E) asymptotically as
E → ±∞. Since we can calculate �r

α(E) explicitly by

�r
α(E) = [ESDα − hDα] gr

α(E) [ESαD − hαD] , (C6)

we can determine �0
α,�1

α from the values of �r
α(E) at some

very large E.
By the way, Eq. (C5) can also be obtained by expand-

ing Eq. (C6) and utilizing the fact that [(E + iη)Sα − hα]
gr

α(E) = I , where η → 0+. In this way, Eq. (27) in
Sec. II B can also be shown easily,

�̃r
α(E) = 1

2π
P

∫ ∞

−∞
dE′ �α(E′)

E − E′ − i

2
�α(E)

= h̃Dα gr
α(E)h̃αD.

(C7)

APPENDIX D: INITIAL VALUES FOR HEOM

Proper initial values for RSDM, 1st and 2nd tier ARSDM
are essential for the propagation of HEOM to produce phys-
ically correct results. Here, the system is assumed to be ini-
tially in the equilibrium state. In this case, the RSDM, 1st and
2nd tier ARSDM keep unchanged as long as no bias voltage is
applied (i.e., σ̇D = ϕ̇α,k = ϕ̇α,k,α′,k′ = 0). And the electrons
occupy the single-particle states according to the Fermi-Dirac
distribution so that

G<
D(E) = −2if (E − μ)ImGr

D(E),

G>
D(E) = 2i

[
1 − f (E − μ)

]
ImGr

D(E),
(D1)

where μ is the chemical potential at equilibrium. The equi-
librium RSDM can be calculated by a semi-circular contour
integral of Gr

D(E) on the upper complex plane,

σD = − 1

π
Im

[∫ ∞

−∞
dEf (E − μ)Gr

D(E)

]

= − 1

π
Im

[∫
C

dEf (E − μ)Gr
D(E) +

∑
p

RpGr
D(ζp)

]
,

(D2)

where C is a semi-circular contour on the upper complex
plane and ζ p = μ + izp and −Rp are the pth Padè pole and
residue of the Fermi function, respectively. The summation
runs through all singularities lying between the semi-circle
and real axis.

The equilibrium 1st tier ARSDM can be evaluated by
residue theorem since the semi-circle contour integral trends
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to zero when its radius trends to infinity,

ϕα,k = 1

2π

∫ ∞

−∞
dE

[ 1

E − εα,k

G<
D(E)A>+

α,k

− 1

E − εα,k

G>
D(E)A<+

α,k

]

= i

2π

∫ ∞

−∞
dE

[ i
[
Gr

D(E) − Ga
D(E)

]
A<+

α,k

E − εα,k

+ f (E − μ)
[
Gr

D(E) − Ga
D(E)

]
�α,k

E − εα,k

]
= − Gr

D(εα,k)
[
i A<+

α,k + f (εα,k − μ)�α,k

]

− 2
Np∑
p=1

[
ε∗
α,kRe(	α,k,p) − Re

(
ζp	α,k,p

)]
�α,k.

(D3)

In the last equality, the first term corresponds to the residue
at E = εα,k while the second term corresponds to the residues
of Fermi function. ε∗

α,k is the complex conjugate of εα, k and
�α, k, p is the short-hand notation for

	α,k,p = Rp(
ζp − εα,k

) (
ζp − ε∗

α,k

)Gr
D(ζp). (D4)

Once the 1st tier ARSDM are known, initial values for 2nd tier
ARSDM ϕα,k,α′,k′ can be evaluated directly by requiring them
to satisfy d

dt
ϕα,k,α′,k′(t) = 0. This gives

ϕα,k,α′,k′ = �α′,k′ϕα,k − ϕ
†
α′,k′�α,k

εα,k − ε∗
α′,k′

. (D5)

It is noted that the denominator is always non-zero since
Im

[
εα,k

]
> 0 for any α and k, which can be seen from

Eqs. (40) and (41).
With the proper initial values for σD,ϕα,k,ϕα,k,α′,k′ , we

can then propagate the HEOM to obtain the time-dependent
σD(t),ϕα,k(t),ϕα,k,α′,k′(t).
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