1,139 research outputs found

    Spatial Distribution and Magnetism in Poly-Cr-doped GaN from First Principles

    Get PDF
    Large scale density-functional theory calculations have been performed to understand the spatial distribution and magnetic coupling of Cr-doped GaN, in which exhaustive structural and magnetic configurations have been investigated by doping of up to five Cr atoms in large supercells. Our results provide direct evidence that the distribution of the doped magnetic ions is neither homogeneous nor random as widely assumed previously. Rather, under both Ga-rich and N-rich growth conditions, the Cr atoms have a strong tendency to form substitutional, embedded clusters with short-range magnetic interactions maintaining the wurtzite structure. Significantly, while the ferromagnetic state is favored for pair doping, for more than two-Cr-atom clustering configurations, states containing antiferromagnetic or ferrimagnetic coupling with net spins in the range of 0.06-1.47”B/Cr are preferred. The formation of embedded clusters leads to notable local structural distortions and considerable magnetic moments on the Cr-bonded N atoms. Also importantly, the electrical properties (metallic, half-metallic, or semiconducting) are found to strongly depend on the dopant concentration. We propose a picture where various cluster configurations coexist and the statistical distribution and associated magnetism depend sensitively on sample growth details. The results obtained are in agreement with recent experiments. Such a view can explain many hitherto puzzling experimental observations, e.g., the much lower value of the measured mean saturation magnetic moment on Cr as compared to the theoretically predicted value for the isolated dopants; the anomalous lattice constant change in relation to the dopant concentration and temperature; and the strong dependence of the magnetization on the Cr concentration, growth temperature, and annealing. We find a similar behavior for Mn in GaN and Cr and Mn in AlN and argue that such a scenario may also hold for other dilute magnetic semiconductor systems

    Role of Embedded Clustering in Dilute Magnetic Semiconductors: Cr Doped GaN

    Get PDF
    Results of extensive density-functional studies provide direct evidence that Cr atoms in Cr:GaN have a strong tendency to form embedded clusters, occupying Ga sites. Significantly, for larger than 2-Cr-atom clusters, states containing antiferromagnetic coupling with net spin in the range 0.06-1.47 ”B/Cr are favored. We propose a picture where various configurations coexist and the statistical distribution and associated magnetism will depend sensitively on the growth details. Such a view may elucidate many puzzling observations related to the structural and magnetic properties of III-N and other dilute semiconductors

    Dimensional crossover in the electrical and magnetic properties of the layered LaSb2 superconductor under pressure: The role of phase fluctuations

    Get PDF
    We present electrical transport, magnetization, and ac as well as dc magnetic susceptibility measurements of the highly anisotropic compound LaSb2. Our data display a very broad anisotropic transition upon cooling below 2.5 K into a clean superconducting state with a field-dependent magnetization that is consistent with type I behavior. We identify distinct features of two-dimensionality in both the transport and magnetic properties. Application of hydrostatic pressure induces a two- to three-dimensional crossover evidenced by a reduced anisotropy and transition width. The superconducting transition appears phase-fluctuation-limited at ambient pressure, with fluctuations observed for temperatures greater than eight times the superconducting critical temperature. © 2011 American Physical Society

    Anisotropic Magnetoresistance in Ga1−x_{1-x}Mnx_xAs

    Full text link
    We have measured the magnetoresistance in a series of Ga1−x_{1-x}Mnx_xAs samples with 0.033≀x≀\le x \le 0.053 for three mutually orthogonal orientations of the applied magnetic field. The spontaneous resistivity anisotropy (SRA) in these materials is negative (i.e. the sample resistance is higher when its magnetization is perpendicular to the measuring current than when the two are parallel) and has a magnitude on the order of 5% at temperatures near 10K and below. This stands in contrast to the results for most conventional magnetic materials where the SRA is considerably smaller in magnitude for those few cases in which a negative sign is observed. The magnitude of the SRA drops from its maximum at low temperatures to zero at TC_C in a manner that is consistent with mean field theory. These results should provide a significant test for emerging theories of transport in this new class of materials.Comment: 4 pages with 4 figures. Submitted to Physical Review

    Properties of small molecular drug loading and diffusion in a fluorinated PEG hydrogel studied by ^1H molecular diffusion NMR and ^(19)F spin diffusion NMR

    Get PDF
    R_f-PEG (fluoroalkyl double-ended poly(ethylene glycol)) hydrogel is potentially useful as a drug delivery depot due to its advanced properties of sol–gel two-phase coexistence and low surface erosion. In this study, ^1H molecular diffusion nuclear magnetic resonance (NMR) and ^(19)F spin diffusion NMR were used to probe the drug loading and diffusion properties of the R_f-PEG hydrogel for small anticancer drugs, 5-fluorouracil (FU) and its hydrophobic analog, 1,3-dimethyl-5-fluorouracil (DMFU). It was found that FU has a larger apparent diffusion coefficient than that of DMFU, and the diffusion of the latter was more hindered. The result of ^(19)F spin diffusion NMR for the corresponding freeze-dried samples indicates that a larger portion of DMFU resided in the R_f core/IPDU intermediate-layer region (where IPDU refers to isophorone diurethane, as a linker to interconnect the R_f group and the PEG chain) than that of FU while the opposite is true in the PEG–water phase. To understand the experimental data, a diffusion model was proposed to include: (1) hindered diffusion of the drug molecules in the R_f core/IPDU-intermediate-layer region; (2) relatively free diffusion of the drug molecules in the PEG-water phase (or region); and (3) diffusive exchange of the probe molecules between the above two regions. This study also shows that molecular diffusion NMR combined with spin diffusion NMR is useful in studying the drug loading and diffusion properties in hydrogels for the purpose of drug delivery applications

    Minisuperspace Quantization of "Bubbling AdS" and Free Fermion Droplets

    Full text link
    We quantize the space of 1/2 BPS configurations of Type IIB SUGRA found by Lin, Lunin and Maldacena (hep-th/0409174), directly in supergravity. We use the Crnkovic-Witten-Zuckerman covariant quantization method to write down the expression for the symplectic structure on this entire space of solutions. We find the symplectic form explicitly around AdS_5 x S^5 and obtain a U(1) Kac-Moody algebra, in precise agreement with the quantization of a system of N free fermions in a harmonic oscillator potential, as expected from AdS/CFT. As a cross check, we also perform the quantization around AdS_5 x S^5 by another method, using the known spectrum of physical perturbations around this background and find precise agreement with our previous calculation.Comment: 22 Pages + 2 Appendices, JHEP3; v3: explanation of factor 2 mismatch added, references reordered, published versio

    Nanotube Action between Human Mesothelial Cells Reveals Novel Aspects of Inflammatory Responses

    Get PDF
    A well-known role of human peritoneal mesothelial cells (HPMCs), the resident cells of the peritoneal cavity, is the generation of an immune response during peritonitis by activation of T-cells via antigen presentation. Recent findings have shown that intercellular nanotubes (NTs) mediate functional connectivity between various cell types including immune cells - such as T-cells, natural killer (NK) cells or macrophages - by facilitating a spectrum of long range cell-cell interactions. Although of medical interest, the relevance of NT-related findings for human medical conditions and treatment, e.g. in relation to inflammatory processes, remains elusive, particularly due to a lack of appropriate in vivo data. Here, we show for the first time that primary cultures of patient derived HPMCs are functionally connected via membranous nanotubes. NT formation appears to be actin cytoskeleton dependent, mediated by the action of filopodia. Importantly, significant variances in NT numbers between different donors as a consequence of pathophysiological alterations were observable. Furthermore, we show that TNF-α induces nanotube formation and demonstrate a strong correlation of NT connectivity in accordance with the cellular cholesterol level and distribution, pointing to a complex involvement of NTs in inflammatory processes with potential impact for clinical treatment
    • 

    corecore