23,027 research outputs found
A new calibration method for time delay standard and its application
A method which is used to measure time delay accurately by using a Type 900-LB slotted line is described. The accuracy for calibrating time delay of a precision coaxial air line Type 900-L is about + or - (0.4 to 0.6)ps, and for coaxial cables with VSWR less than 1.5 and time delay t less than 50ns is about + or - (3 to 5)ps. Theoretical analysis and mathematical derivation of microwave networks in cascade are given. Methods to eliminate the errors which are caused by the discontinuities and the error analysis of the measuring system are presented. Skin effect analysis of the transient characteristic of coaxial transmission line are discussed in detail. Methods to eliminate the errors which result from using the calibrated time delay standard to calibrate time interval measurement instruments are presented. The estimation of errors and formulae for correction of those errors are described
A conditional quantum phase gate between two 3-state atoms
We propose a scheme for conditional quantum logic between two 3-state atoms
that share a quantum data-bus such as a single mode optical field in cavity QED
systems, or a collective vibrational state of trapped ions. Making use of
quantum interference, our scheme achieves successful conditional phase
evolution without any real transitions of atomic internal states or populating
the quantum data-bus. In addition, it only requires common addressing of the
two atoms by external laser fields.Comment: 8 fig
Magnetic control of the pair creation in spatially localized supercritical fields
We examine the impact of a perpendicular magnetic field on the creation mechanism of electron-positron pairs in a supercritical static electric field, where both fields are localized along the direction of the electric field. In the case where the spatial extent of the magnetic field exceeds that of the electric field, quantum field theoretical simulations based on the Dirac equation predict a suppression of pair creation even if the electric field is supercritical. Furthermore, an arbitrarily small magnetic field outside the interaction zone can bring the creation process even to a complete halt, if it is sufficiently extended. The mechanism for this magnetically induced complete shutoff can be associated with a reopening of the mass gap and the emergence of electrically dressed Landau levels
Characterizing Ranked Chinese Syllable-to-Character Mapping Spectrum: A Bridge Between the Spoken and Written Chinese Language
One important aspect of the relationship between spoken and written Chinese
is the ranked syllable-to-character mapping spectrum, which is the ranked list
of syllables by the number of characters that map to the syllable. Previously,
this spectrum is analyzed for more than 400 syllables without distinguishing
the four intonations. In the current study, the spectrum with 1280 toned
syllables is analyzed by logarithmic function, Beta rank function, and
piecewise logarithmic function. Out of the three fitting functions, the
two-piece logarithmic function fits the data the best, both by the smallest sum
of squared errors (SSE) and by the lowest Akaike information criterion (AIC)
value. The Beta rank function is the close second. By sampling from a Poisson
distribution whose parameter value is chosen from the observed data, we
empirically estimate the -value for testing the
two-piece-logarithmic-function being better than the Beta rank function
hypothesis, to be 0.16. For practical purposes, the piecewise logarithmic
function and the Beta rank function can be considered a tie.Comment: 15 pages, 4 figure
Exploiting Cognitive Structure for Adaptive Learning
Adaptive learning, also known as adaptive teaching, relies on learning path
recommendation, which sequentially recommends personalized learning items
(e.g., lectures, exercises) to satisfy the unique needs of each learner.
Although it is well known that modeling the cognitive structure including
knowledge level of learners and knowledge structure (e.g., the prerequisite
relations) of learning items is important for learning path recommendation,
existing methods for adaptive learning often separately focus on either
knowledge levels of learners or knowledge structure of learning items. To fully
exploit the multifaceted cognitive structure for learning path recommendation,
we propose a Cognitive Structure Enhanced framework for Adaptive Learning,
named CSEAL. By viewing path recommendation as a Markov Decision Process and
applying an actor-critic algorithm, CSEAL can sequentially identify the right
learning items to different learners. Specifically, we first utilize a
recurrent neural network to trace the evolving knowledge levels of learners at
each learning step. Then, we design a navigation algorithm on the knowledge
structure to ensure the logicality of learning paths, which reduces the search
space in the decision process. Finally, the actor-critic algorithm is used to
determine what to learn next and whose parameters are dynamically updated along
the learning path. Extensive experiments on real-world data demonstrate the
effectiveness and robustness of CSEAL.Comment: Accepted by KDD 2019 Research Track. In Proceedings of the 25th ACM
SIGKDD International Conference on Knowledge Discovery & Data Mining (KDD'19
Lie bialgebras of generalized Witt type
In a paper by Michaelis a class of infinite-dimensional Lie bialgebras
containing the Virasoro algebra was presented. This type of Lie bialgebras was
classified by Ng and Taft. In this paper, all Lie bialgebra structures on the
Lie algebras of generalized Witt type are classified. It is proved that, for
any Lie algebra of generalized Witt type, all Lie bialgebras on are
coboundary triangular Lie bialgebras. As a by-product, it is also proved that
the first cohomology group is trivial.Comment: 14 page
Quantum simulation of artificial Abelian gauge field using nitrogen-vacancy center ensembles coupled to superconducting resonators
We propose a potentially practical scheme to simulate artificial Abelian
gauge field for polaritons using a hybrid quantum system consisting of
nitrogen-vacancy center ensembles (NVEs) and superconducting transmission line
resonators (TLR). In our case, the collective excitations of NVEs play the role
of bosonic particles, and our multiport device tends to circulate polaritons in
a behavior like a charged particle in an external magnetic field. We discuss
the possibility of identifying signatures of the Hofstadter "butterfly" in the
optical spectra of the resonators, and analyze the ground state crossover for
different gauge fields. Our work opens new perspectives in quantum simulation
of condensed matter and many-body physics using hybrid spin-ensemble circuit
quantum electrodynamics system. The experimental feasibility and challenge are
justified using currently available technology.Comment: 6 papes+supplementary materia
Deformation Activity Analysis of a Ground Fissure Based on Instantaneous Total Energy
This study proposes a novel instantaneous total energy method to perform an activity analysis of ground fissures deformation, which is calculated by integrating the extreme-point symmetric mode decomposition (ESMD) method and kinetic energy based on the time-series displacement acquired by shape acceleration array (SAA) sensors. The proposed method is tested on the Xiwang Road fissure in Beijing, China. First, to fully monitor the hanging wall and footwall of the monitored ground fissure, a 4 m-long SAA in the vertical direction and an 8 m-long SAA in the horizontal direction were embedded in a ground fissure to obtain an accurate time-series displacement with an accuracy of ±1.5 mm/32 m and a displacement acquisition frequency of once an hour. Second, to improve the accuracy of the activity analysis, the ESMD method and Spearman's rho are applied to perform signal denoising of the original time-series displacement obtained by the SAA sensors. Finally, the instantaneous total energy is obtained to analyze the activity of the monitored ground fissure. The results demonstrate that the proposed method is more reliable to reflect the activity of a monitored ground fissure compared to the time-series displacement
- …