4,548 research outputs found

    Strong-disorder renormalization for interacting non-Abelian anyon systems in two dimensions

    Get PDF
    We consider the effect of quenched spatial disorder on systems of interacting, pinned non-Abelian anyons as might arise in disordered Hall samples at filling fractions \nu=5/2 or \nu=12/5. In one spatial dimension, such disordered anyon models have previously been shown to exhibit a hierarchy of infinite randomness phases. Here, we address systems in two spatial dimensions and report on the behavior of Ising and Fibonacci anyons under the numerical strong-disorder renormalization group (SDRG). In order to manage the topology-dependent interactions generated during the flow, we introduce a planar approximation to the SDRG treatment. We characterize this planar approximation by studying the flow of disordered hard-core bosons and the transverse field Ising model, where it successfully reproduces the known infinite randomness critical point with exponent \psi ~ 0.43. Our main conclusion for disordered anyon models in two spatial dimensions is that systems of Ising anyons as well as systems of Fibonacci anyons do not realize infinite randomness phases, but flow back to weaker disorder under the numerical SDRG treatment.Comment: 12 pages, 12 figures, 1 tabl

    Two-dimensional quantum liquids from interacting non-Abelian anyons

    Full text link
    A set of localized, non-Abelian anyons - such as vortices in a p_x + i p_y superconductor or quasiholes in certain quantum Hall states - gives rise to a macroscopic degeneracy. Such a degeneracy is split in the presence of interactions between the anyons. Here we show that in two spatial dimensions this splitting selects a unique collective state as ground state of the interacting many-body system. This collective state can be a novel gapped quantum liquid nucleated inside the original parent liquid (of which the anyons are excitations). This physics is of relevance for any quantum Hall plateau realizing a non-Abelian quantum Hall state when moving off the center of the plateau.Comment: 5 pages, 6 figure

    Temperature dependence of the diffuse scattering fine structure in equiatomic CuAu

    Get PDF
    The temperature dependence of the diffuse scattering fine structure from disordered equiatomic CuAu was studied using {\it in situ} x-ray scattering. In contrast to Cu3_3Au the diffuse peak splitting in CuAu was found to be relatively insensitive to temperature. Consequently, no evidence for a divergence of the antiphase length-scale at the transition temperature was found. At all temperatures studied the peak splitting is smaller than the value corresponding to the CuAuII modulated phase. An extended Ginzburg-Landau approach is used to explain the temperature dependence of the diffuse peak profiles in the ordering and modulation directions. The estimated mean-field instability point is considerably lower than is the case for Cu3_3Au.Comment: 4 pages, 5 figure

    On the relation between entanglement and subsystem Hamiltonians

    Full text link
    We show that a proportionality between the entanglement Hamiltonian and the Hamiltonian of a subsystem exists near the limit of maximal entanglement under certain conditions. Away from that limit, solvable models show that the coupling range differs in both quantities and allow to investigate the effect.Comment: 7 pages, 2 figures version2: minor changes, typos correcte

    The continuum limit of the integrable open XYZ spin-1/2 chain

    Full text link
    We show that the continuum limit of the integrable XYZ spin-1/2 chain on a half-line gives rise to the boundary sine-Gordon theory using the perturbation method.Comment: 8pages, LaTeX; typos in eq.(11) removed, one in reference correcte

    Calibrating the Mixing Length Parameter for a Red Giant Envelope

    Get PDF
    Two-dimensional hydrodynamical simulations were made to calibrate the mixing length parameter for modeling red giant's convective envelope. As was briefly reported in Asida & Tuchman (97), a comparison of simulations starting with models integrated with different values of the mixing length parameter, has been made. In this paper more results are presented, including tests of the spatial resolution and Large Eddy Simulation terms used by the numerical code. The consistent value of the mixing length parameter was found to be 1.4, for a red giant of mass 1.2 solar-mass, core mass of 0.96 solar-mass, luminosity of 200 solar-luminosities, and metallicity Z=0.001.Comment: 18 pages, 1 table, 13 figures. Accepted for publication in Ap.

    Mode identification of Pulsating White Dwarfs using the HST

    Full text link
    We have obtained time-resolved ultraviolet spectroscopy for the pulsating DAV stars G226-29 and G185-32, and for the pulsating DBV star PG1351+489 with the Hubble Space Telescope Faint Object Spectrograph, to compare the ultraviolet to the optical pulsation amplitude and determine the pulsation indices. We find that for essentially all observed pulsation modes, the amplitude rises to the ultraviolet as the theoretical models predict for l=1 non-radial g-modes. We do not find any pulsation mode visible only in the ultraviolet, nor any modes whose phase flips by 180 degrees; in the ultraviolet, as would be expected if high l pulsations were excited. We find one periodicity in the light curve of G185-32, at 141 s, which does not fit theoretical models for the change of amplitude with wavelength of g-mode pulsations.Comment: Accepted for publication in the Astrophysical Journal, Aug 200

    Classification of topological insulators and superconductors in three spatial dimensions

    Full text link
    We systematically study topological phases of insulators and superconductors (SCs) in 3D. We find that there exist 3D topologically non-trivial insulators or SCs in 5 out of 10 symmetry classes introduced by Altland and Zirnbauer within the context of random matrix theory. One of these is the recently introduced Z_2 topological insulator in the symplectic symmetry class. We show there exist precisely 4 more topological insulators. For these systems, all of which are time-reversal (TR) invariant in 3D, the space of insulating ground states satisfying certain discrete symmetry properties is partitioned into topological sectors that are separated by quantum phase transitions. 3 of the above 5 topologically non-trivial phases can be realized as TR invariant SCs, and in these the different topological sectors are characterized by an integer winding number defined in momentum space. When such 3D topological insulators are terminated by a 2D surface, they support a number (which may be an arbitrary non-vanishing even number for singlet pairing) of Dirac fermion (Majorana fermion when spin rotation symmetry is completely broken) surface modes which remain gapless under arbitrary perturbations that preserve the characteristic discrete symmetries. In particular, these surface modes completely evade Anderson localization. These topological phases can be thought of as 3D analogues of well known paired topological phases in 2D such as the chiral p-wave SC. In the corresponding topologically non-trivial and topologically trivial 3D phases, the wavefunctions exhibit markedly distinct behavior. When an electromagnetic U(1) gauge field and fluctuations of the gap functions are included in the dynamics, the SC phases with non-vanishing winding number possess non-trivial topological ground state degeneracies.Comment: 20 pages. Changed title, added two table
    • …
    corecore