6 research outputs found

    An Efficient Oblivious Random Data Access Scheme in Cloud Computing

    No full text
    With the development of cloud computing and cloud storage techniques, much attention has been focused on the privacy protection of outsourced data. Existing searchable encryption solutions can ensure the confidentiality and availability of data stored on the cloud. However, searchable encryption is vulnerable to statistical inference attacks, which exploit the disclosure of access patterns on encrypted indexes and encrypted file sets, which has become a potential way to reveal user privacy. Oblivious random access memory (ORAM) is an important means of concealing access patterns, yet its direct use in searchable encryptions is expensive. This paper presents a scheme for efficient and oblivious access to encrypted databases through encrypted indexes. This scheme is a hybrid ORAM scheme, which utilizes semi-homomorphic encryption to perform calculations in the ciphertext domain, overcoming the limitations of the huge overhead associated with Path-ORAM. For excessive amounts of data, semi-homomorphic encryption can significantly reduce communication and storage overhead. Our scheme can achieve high-security encrypted search and update operations at the same time. Moreover, the execution speed of ODS-Tree is 2-8x faster than that of ORAM-based schemes. In addition, the proposed scheme reduces the data block transmission and storage costs compared to existing frameworks

    2010-2015 North American methane emissions, sectoral contributions, and trends: A high-resolution inversion of GOSAT observations of atmospheric methane

    No full text
    We use 2010 2015 Greenhouse Gases Observing Satellite (GOSAT) observations of atmospheric methane columns over North America in a high-resolution inversion of methane emissions, including contributions from different sectors and their trends over the period. The inversion involves an analytical solution to the Bayesian optimization problem for a Gaussian mixture model (GMM) of the emission field with up to 0:5-0:625 resolution in concentrated source regions. The analytical solution provides a closedform characterization of the information content from the inversion and facilitates the construction of a large ensemble of solutions exploring the effect of different uncertainties and assumptions in the inverse analysis. Prior estimates for the inversion include a gridded version of the Environmental Protection Agency (EPA) Inventory of US Greenhouse Gas Emissions and Sinks (GHGI) and the WetCHARTs model ensemble for wetlands. Our best estimate for mean 2010 2015 US anthropogenic emissions is 30.6 (range: 29.4 31.3) Tg a-1, slightly higher than the gridded EPA inventory (28.7 (26.4 36.2) Tg a-1). The main discrepancy is for the oil and gas production sectors, where we find higher emissions than the GHGI by 35% and 22 %, respectively. The most recent version of the EPA GHGI revises downward its estimate of emissions from oil production, and we find that these are lower than our estimate by a factor of 2. Our best estimate of US wetland emissions is 10.2 (5.6 11.1) Tg a-1, on the low end of the prior WetCHARTs inventory uncertainty range (14.2 (3.3 32.4) Tg a-1), which calls for better understanding of these emissions. We find an increasing trend in US anthropogenic emissions over 2010 2015 of 0.4%a-1, lower than previous GOSAT-based estimates but opposite to the decrease reported by the EPA GHGI. Most of this increase appears driven by unconventional oil and gas production in the eastern US. We also find that oil and gas production emissions in Mexico are higher than in the nationally reported inventory, though there is evidence for a 2010 2015 decrease in emissions from offshore oil production

    Observation-derived 2010-2019 trends in methane emissions and intensities from US oil and gas fields tied to activity metrics

    No full text
    The United States is the world's largest oil/gas methane emitter according to current national reports. Reducing these emissions is a top priority in the US government's climate action plan. Here, we use a 2010 to 2019 high-resolution inversion of surface and satellite observations of atmospheric methane to quantify emission trends for individual oil/gas production regions in North America and relate them to production and infrastructure. We estimate a mean US oil/gas methane emission of 14.8 (12.4 to 16.5) Tg a-1 for 2010 to 2019, 70% higher than reported by the US Environmental Protection Agency. While emissions in Canada and Mexico decreased over the period, US emissions increased from 2010 to 2014, decreased until 2017, and rose again afterward. Increases were driven by the largest production regions (Permian, Anadarko, Marcellus), while emissions in the smaller production regions generally decreased. Much of the year-to-year emission variability can be explained by oil/gas production rates, active well counts, and new wells drilled, with the 2014 to 2017 decrease driven by reduction in new wells and the 2017 to 2019 surge driven by upswing of production. We find a steady decrease in the oil/gas methane intensity (emission per unit methane gas production) for almost all major US production regions. The mean US methane intensity decreased from 3.7% in 2010 to 2.5% in 2019. If the methane intensity for the oil/gas supply chain continues to decrease at this pace, we may expect a 32% decrease in US oil/gas emissions by 2030 despite projected increases in production

    Global methane budget and trend, 2010–2017: complementarity of inverse analyses using in situ (GLOBALVIEWplus CH4 ObsPack) and satellite (GOSAT) observations

    No full text
    We use satellite (GOSAT) and in situ (GLOB ALVIEWplus CH4 ObsPack) observations of atmospheric methane in a joint global inversion of methane sources, sinks, and trends for the 2010-2017 period. The inversion is done by analytical solution to the Bayesian optimization problem, yielding closed-form estimates of information content to as sess the consistency and complementarity (or redundancy) of the satellite and in situ data sets. We find that GOSAT and in situ observations are to a large extent complementary, with GOSAT providing a stronger overall constraint on the global methane distributions, but in situ observations being more important for northern midlatitudes and for relaxing global error correlations between methane emissions and the main methane sink (oxidation by OH radicals). The in-situ only and the GOSAT-only inversions alone achieve 113 and 212 respective independent pieces of information (DOFS) for quantifying mean 2010-2017 anthropogenic emissions on 1009 global model grid elements, and respective DOFS of 67 and 122 for 2010-2017 emission trends. The joint GOSAT+ in situ inversion achieves DOFS of 262 and 161 for mean emissions and trends, respectively. Thus, the in situ data in crease the global information content from the GOSAT-only inversion by 20 %-30 %. The in-situ-only and GOSAT-only inversions show consistent corrections to regional methane emissions but are less consistent in optimizing the global methane budget. The joint inversion finds that oil and gas emissions in the US and Canada are underestimated relative to the values reported by these countries to the United Na tions Framework Convention on Climate Change (UNFCCC) and used here as prior estimates, whereas coal emissions in China are overestimated. Wetland emissions in North Amer ica are much lower than in the mean WetCHARTs inventory used as a prior estimate. Oil and gas emissions in the US in crease over the 2010-2017 period but decrease in Canada and Europe. The joint inversion yields a global methane emis sion of 551 Tg a-1 averaged over 2010-2017 and a methane lifetime of 11.2 years against oxidation by tropospheric OH (86 % of the methane sink)

    SCOPE: SCUBA-2 Continuum Observations of Pre-protostellar Evolution - survey description and compact source catalogue

    Full text link
    We present the first release of the data and compact-source catalogue for the JCMT Large Program SCUBA-2 Continuum Observations of Pre-protostellar Evolution (SCOPE). SCOPE consists of 850 μm continuum observations of 1235 Planck Galactic Cold Clumps (PGCCs) made with the Submillimetre Common-User Bolometer Array 2 on the James Clerk Maxwell Telescope. These data are at an angular resolution of 14.4 arcsec, significantly improving upon the 353 GHz resolution of Planck at 5 arcmin, and allowing for a catalogue of 3528 compact sources in 558 PGCCs. We find that the detected PGCCs have significant sub-structure, with 61 per cent of detected PGCCs having three or more compact sources, with filamentary structure also prevalent within the sample. A detection rate of 45 per cent is found across the survey, which is 95 per cent complete to Planck column densities of N(H2) > 5 × 10^21 cm^−2. By positionally associating the SCOPE compact sources with young stellar objects, the star formation efficiency, as measured by the ratio of luminosity to mass, in nearby clouds is found to be similar to that in the more distant Galactic Plane, with the column density distributions also indistinguishable from each other
    corecore