5,601 research outputs found
Recommended from our members
Robust filtering for gene expression time series data with variance constraints
This is the post print version of the article. The official published version can be obtained from the link below - Copyright 2007 Taylor & Francis Ltd.In this paper, an uncertain discrete-time stochastic system is employed to represent a model for gene regulatory networks from time series data. A robust variance-constrained filtering problem is investigated for a gene expression model with stochastic disturbances and norm-bounded parameter uncertainties, where the stochastic perturbation is in the form of a scalar Gaussian white noise with constant variance and the parameter uncertainties enter both the system matrix and the output matrix. The purpose of the addressed robust filtering problem is to design a linear filter such that, for the admissible bounded uncertainties, the filtering error system is Schur stable and the individual error variance is less than a prespecified upper bound. By using the linear matrix inequality (LMI) technique, sufficient conditions are first derived for ensuring the desired filtering performance for the gene expression model. Then the filter gain is characterized in terms of the solution to a set of LMIs, which can easily be solved by using available software packages. A simulation example is exploited for a gene expression model in order to demonstrate the effectiveness of the proposed design procedures.This work was supported in part by the Engineering and Physical Sciences Research Council (EPSRC) of the UK under Grants GR/S27658/01 and EP/C524586/1, the Biotechnology and Biological Sciences Research Council (BBSRC) of the UK under Grants BB/C506264/1 and 100/EGM17735, the Nuffield Foundation of the UK under Grant NAL/00630/G, and the Alexander von Humboldt Foundation of Germany
A unique distant submillimeter galaxy with an X-ray-obscured radio-luminous active galactic nucleus
We present a multiwavelength study of an atypical submillimeter galaxy in the
GOODS-North field, with the aim to understand its physical properties of
stellar and dust emission, as well as the central AGN activity. Although it is
shown that the source is likely an extremely dusty galaxy at high redshift, its
exact position of submillimeter emission is unknown. With the new NOEMA
interferometric imaging, we confirm that the source is a unique dusty galaxy.
It has no obvious counterpart in the optical and even NIR images observed with
HST at lambda~<1.4um. Photometric-redshift analyses from both stellar and dust
SED suggest it to likely be at z~>4, though a lower redshift at z~>3.1 cannot
be fully ruled out (at 90% confidence interval). Explaining its unusual
optical-to-NIR properties requires an old stellar population (~0.67 Gyr),
coexisting with a very dusty ongoing starburst component. The latter is
contributing to the FIR emission, with its rest-frame UV and optical light
being largely obscured along our line of sight. If the observed fluxes at the
rest-frame optical/NIR wavelengths were mainly contributed by old stars, a
total stellar mass of ~3.5x10^11Msun would be obtained. An X-ray spectral
analysis suggests that this galaxy harbors a heavily obscured AGN with
N_H=3.3x10^23 cm^-2 and an intrinsic 2-10 keV luminosity of L_X~2.6x10^44
erg/s, which places this object among distant type 2 quasars. The radio
emission of the source is extremely bright, which is an order of magnitude
higher than the star-formation-powered emission, making it one of the most
distant radio-luminous dusty galaxies. The combined characteristics of the
galaxy suggest that the source appears to have been caught in a rare but
critical transition stage in the evolution of submillimeter galaxies, where we
are witnessing the birth of a young AGN and possibly the earliest stage of its
jet formation and feedback.Comment: 13 pages in printer format, 10 figures, 1 table, accepted for
publication in the A&
Deposition morphology of non-homogeneous debris flow and its energy characteristics
Non-homogeneous two-phase debris flows are widely found in the western mountainous regions of China. To investigate the characteristics of the debris flow deposition process related to the morphology and extent of the debris fan, a series of physical experiments were carried out using an experimental flume. Some useful relationships were obtained to link the flow velocity with the geometric characteristics of deposition morphology and the corresponding area or volume. Based on these, some expressions about energy dissipation process in both the transport-deposition zone and deposition zone are presented, and improved equations describing solid-liquid two-phase energy transformations in the specific deposition zone are also established. These results provide a basis for further investigating the underlying mechanisms of non-homogeneous debris flows, based upon which effective disaster control measures can be undertaken
Recommended from our members
Joint Design of Power Allocation, Beamforming, and Positioning for Energy-Efficient UAV-Aided Multiuser Millimeter-Wave Systems
National Natural Science Foundation of China under Grant 62031017, Grant 61971220, and Grant 61971221; Open Research Fund of State Key Laboratory of Millimeter Waves of Southeast University under Grant K202215
Low Mach number effect in simulation of high Mach number flow
In this note, we relate the two well-known difficulties of Godunov schemes:
the carbuncle phenomena in simulating high Mach number flow, and the inaccurate
pressure profile in simulating low Mach number flow. We introduced two simple
low-Mach-number modifications for the classical Roe flux to decrease the
difference between the acoustic and advection contributions of the numerical
dissipation. While the first modification increases the local numerical
dissipation, the second decreases it. The numerical tests on the double-Mach
reflection problem show that both modifications eliminate the kinked Mach stem
suffered by the original flux. These results suggest that, other than
insufficient numerical dissipation near the shock front, the carbuncle
phenomena is strongly relevant to the non-comparable acoustic and advection
contributions of the numerical dissipation produced by Godunov schemes due to
the low Mach number effect.Comment: 9 pages, 1 figur
NGC 2992 in an X-ray high state observed by XMM: Response of the Relativistic Fe K Line to the Continuum
We present the analysis of an XMM observation of the Seyfert galaxy NGC 2992.
The source was found in its highest level of X-ray activity yet detected, a
factor higher in 2--10 keV flux than the historical minimum. NGC
2992 is known to exhibit X-ray flaring activity on timescales of days to weeks,
and the XMM data provide at least factor of better spectral resolution
in the Fe K band than any previously measured flaring X-ray state. We find that
there is a broad feature in the \sim 5-7 keV band which could be interpreted as
a relativistic Fe K emission line. Its flux appears to have increased
in tandem with the 2--10 keV continuum when compared to a previous Suzaku
observation when the continuum was a factor of lower than that during
the XMM observation. The XMM data are consistent with the general picture that
increased X-ray activity and corresponding changes in the Fe K line
emission occur in the innermost regions of the putative accretion disk. This
behavior contrasts with the behavior of other AGN in which the Fe K
line does not respond to variability in the X-ray.Comment: 30 pages, 6 figures, Accepted to Ap
- ā¦