538 research outputs found

    Comments on Heterotic Flux Compactifications

    Get PDF
    In heterotic flux compactification with supersymmetry, three different connections with torsion appear naturally, all in the form ω+aH\omega+a H. Supersymmetry condition carries a=1a=-1, the Dirac operator has a=1/3a=-1/3, and higher order term in the effective action involves a=1a=1. With a view toward the gauge sector, we explore the geometry with such torsions. After reviewing the supersymmetry constraints and finding a relation between the scalar curvature and the flux, we derive the squared form of the zero mode equations for gauge fermions. With \d H=0, the operator has a positive potential term, and the mass of the unbroken gauge sector appears formally positive definite. However, this apparent contradiction is avoided by a no-go theorem that the compactification with H0H\neq 0 and \d H=0 is necessarily singular, and the formal positivity is invalid. With \d H\neq 0, smooth compactification becomes possible. We show that, at least near smooth supersymmetric solution, the size of H2H^2 should be comparable to that of \d H and the consistent truncation of action has to keep αR2\alpha'R^2 term. A warp factor equation of motion is rewritten with αR2\alpha' R^2 contribution included precisely, and some limits are considered.Comment: 31 pages, a numerical factor correcte

    Super Weyl invariance: BPS equations from heterotic worldsheets

    Full text link
    It is well-known that the beta functions on a string worldsheet correspond to the target space equations of motion, e.g. the Einstein equations. We show that the BPS equations, i.e. the conditions of vanishing supersymmetry variations of the space-time fermions, can be directly derived from the worldsheet. To this end we consider the RNS-formulation of the heterotic string with (2,0) supersymmetry, which describes a complex torsion target space that supports a holomorphic vector bundle. After a detailed account of its quantization and renormalization, we establish that the cancellation of the Weyl anomaly combined with (2,0) finiteness implies the heterotic BPS conditions: At the one loop level the geometry is required to be conformally balanced and the gauge background has to satisfy the Hermitean Yang-Mills equations.Comment: 1+31 pages LaTeX, 5 figures; final version, discussion relation Weyl invariance and (2,0) finiteness extended, typos correcte

    Measurement of e+eγχcJe^+e^- \to \gamma\chi_{cJ} via initial state radiation at Belle

    Full text link
    The process e+eγχcJe^+e^- \to \gamma\chi_{cJ} (JJ=1, 2) is studied via initial state radiation using 980 fb1^{-1} of data at and around the Υ(nS)\Upsilon(nS) (nn=1, 2, 3, 4, 5) resonances collected with the Belle detector at the KEKB asymmetric-energy e+ee^+e^- collider. No significant signal is observed except from ψ(2S)\psi(2S) decays. Upper limits on the cross sections between s=3.80\sqrt{s}=3.80 and 5.56 GeV5.56~{\rm GeV} are determined at the 90% credibility level, which range from few pb to a few tens of pb. We also set upper limits on the decay rate of the vector charmonium [ψ(4040\psi(4040), ψ(4160)\psi(4160), and ψ(4415)\psi(4415)] and charmoniumlike [Y(4260)Y(4260), Y(4360)Y(4360), and Y(4660)Y(4660)] states to γχcJ\gamma\chi_{cJ}.Comment: Accepted by PR

    Evidence of Υ(1S)J/ψ+χc1\Upsilon(1S) \to J/\psi+\chi_{c1} and search for double-charmonium production in Υ(1S)\Upsilon(1S) and Υ(2S)\Upsilon(2S) decays

    Full text link
    Using data samples of 102×106102\times10^6 Υ(1S)\Upsilon(1S) and 158×106158\times10^6 Υ(2S)\Upsilon(2S) events collected with the Belle detector, a first experimental search has been made for double-charmonium production in the exclusive decays Υ(1S,2S)J/ψ(ψ)+X\Upsilon(1S,2S)\rightarrow J/\psi(\psi')+X, where X=ηcX=\eta_c, χcJ(J= 0, 1, 2)\chi_{cJ} (J=~0,~1,~2), ηc(2S)\eta_c(2S), X(3940)X(3940), and X(4160)X(4160). No significant signal is observed in the spectra of the mass recoiling against the reconstructed J/ψJ/\psi or ψ\psi' except for the evidence of χc1\chi_{c1} production with a significance of 4.6σ4.6\sigma for Υ(1S)J/ψ+χc1\Upsilon(1S)\rightarrow J/\psi+\chi_{c1}. The measured branching fraction \BR(\Upsilon(1S)\rightarrow J/\psi+\chi_{c1}) is (3.90±1.21(stat.)±0.23(syst.))×106(3.90\pm1.21(\rm stat.)\pm0.23 (\rm syst.))\times10^{-6}. The 90%90\% confidence level upper limits on the branching fractions of the other modes having a significance of less than 3σ3\sigma are determined. These results are consistent with theoretical calculations using the nonrelativistic QCD factorization approach.Comment: 12 pages, 4 figures, 1 table. The fit range was extended to include X(4160) signal according to referee's suggestions. Other results unchanged. Paper was accepted for publication as a regular article in Physical Review

    Measurements of the Υ(10860)\Upsilon(10860) and Υ(11020)\Upsilon(11020) resonances via σ(e+eΥ(nS)π+π)\sigma(e^+e^-\rightarrow\Upsilon(n{\rm S})\pi^+\pi^-)

    Full text link
    We report new measurements of the total cross sections for e+eΥ(nS)π+πe^+e^-\to \Upsilon(n{\rm S})\pi^+\pi^- (nn = 1, 2, 3) and e+ebbˉe^+e^-\to b\bar b from a high-luminosity fine scan of the region s=10.63\sqrt{s} = 10.63-11.0511.05 GeV with the Belle detector. We observe that the Υ(nS)π+π\Upsilon(n{\rm S})\pi^+\pi^- spectra have little or no non-resonant component and extract from them the masses and widths of Υ(10860)\Upsilon(10860) and Υ(11020)\Upsilon(11020) and their relative phase. We find M10860=(10891.1±3.21.7+0.6)M_{10860}=(10891.1\pm3.2^{+0.6}_{-1.7}) MeV/c2c^2 and \Gamma_{10860}=(53.7^{+7.1}_{-5.6}\,^{+1.3}_{-5.4}) MeV and report first measurements M_{11020}=(10987.5^{+6.4}_{-2.5}\,^{+9.0}_{-2.1}) MeV/c2c^2, \Gamma_{11020}=(61^{+9}_{-19}\,^{+2}_{-20}) MeV, and \phi_{\rm 11020}-\phi_{\rm 10860} = (-1.0\pm0.4\,^{+1.4}_{-0.1}) rad.Comment: University of Cincinnati preprint UCHEP-15-01, submitted to Physical Review D - Rapid Communication

    Observation of a new charged charmoniumlike state in B -> J/psi K pi decays

    Full text link
    We present the results of an amplitude analysis of anti-B0 -> J/psi K- pi+ decays. A new charged charmoniumlike state Zc(4200)+ decaying to J/psi pi+ is observed with a significance of 6.2 sigma. The mass and width of the Zc(4200)+ are 4196 +31-29 +17-13 MeV/c^2 and 370 +70-70 +70-132 MeV, respectively; the preferred assignment of the quantum numbers is J^P = 1^+. In addition, we find evidence for Zc(4430)+ -> J/psi pi+. The analysis is based on a 711 fb^-1 data sample collected by the Belle detector at the asymmetric-energy e+ e- collider KEKB.Comment: 14 pages, 13 figure

    Search for B+ -> l+ nu gamma decays with hadronic tagging using the full Belle data sample

    Full text link
    We search for the decay B+ -> l+ nu gamma with l+ = e+ or mu+ using the full Belle data set of 772 x 10^6 BBbar pairs, collected at the Y(4S) resonance with the Belle detector at the KEKB asymmetric-energy e+e- collider. We reconstruct one B meson in a hadronic decay mode and search for the B+ -> l+ nu gamma decay in the remainder of the event. We observe no significant signal within the phase space of E_gamma^sig > 1 GeV and obtain upper limits of BR(B+ -> e+ nu gamma) mu+ nu gamma) l+ nu gamma) < 3.5 x 10^-6 at 90 % credibility level.Comment: Submitted to Phys. Rev.

    First observation of the hadronic transition Υ(4S)ηhb(1P) \Upsilon(4S) \to \eta h_{b}(1P) and new measurement of the hb(1P)h_b(1P) and ηb(1S)\eta_b(1S) parameters

    Full text link
    Using a sample of 771.6×106771.6 \times 10^{6} Υ(4S)\Upsilon(4S) decays collected by the Belle experiment at the KEKB e+ee^+e^- collider, we observe for the first time the transition Υ(4S)ηhb(1P)\Upsilon(4S) \to \eta h_b(1P) with the branching fraction B[Υ(4S)ηhb(1P)]=(2.18±0.11±0.18)×103{\cal B}[\Upsilon(4S) \to \eta h_b(1P)]= (2.18 \pm 0.11 \pm 0.18) \times 10^{-3} and we measure the hb(1P)h_b(1P) mass Mhb(1P)=(9899.3±0.4±1.0)M_{h_{b}(1P)} = (9899.3 \pm 0.4 \pm 1.0) MeV/c2c^{2}, corresponding to the hyperfine splitting ΔMHF(1P)=(0.6±0.4±1.0)\Delta M_{\mathrm HF}(1P) = (0.6 \pm 0.4 \pm 1.0) MeV/c2c^{2}. Using the transition hb(1P)γηb(1S)h_b(1P) \to \gamma \eta_b(1S), we measure the ηb(1S)\eta_b(1S) mass Mηb(1S)=(9400.7±1.7±1.6)M_{\eta_{b}(1S)} = (9400.7 \pm 1.7 \pm 1.6) MeV/c2c^{2}, corresponding to ΔMHF(1S)=(59.6±1.7±1.6)\Delta M_{\mathrm HF}(1S) = (59.6 \pm 1.7 \pm 1.6) MeV/c2c^{2}, the ηb(1S)\eta_b(1S) width Γηb(1S)=(85+6±5)\Gamma_{\eta_{b}(1S)} = (8 ^{+6}_{-5} \pm 5) MeV/c2c^{2} and the branching fraction B[hb(1P)γηb(1S)]=(56±8±4)%{\cal B}[h_b(1P) \to \gamma \eta_b(1S)]= (56 \pm 8 \pm 4) \%.Comment: 7 pages, 2 figures, submitted to Phys. Rev. Let
    corecore