18 research outputs found

    Evolutionary and Ecological Pressures Shaping Social Wasps Collective Defenses

    Get PDF
    Social insects are well known for their aggressive (stinging) responses to a nest disturbance. Still, colonies are attacked due to the high-protein brood cached in their nests. Social wasps have evolved a variety of defense mechanisms to exclude predators, including nest construction and coordinated stinging response. Which predatory pressures have shaped the defensive strategies displayed by social wasps to protect their colonies? We reviewed the literature and explored social media to compare direct and indirect (claims and inferences) evidence of predators attacking individuals and colonies of wasps. Individual foraging wasps are predominantly preyed upon by birds and other arthropods, whereas predators on wasp brood vary across subfamilies of Vespidae. Polistinae wasps are predominantly preyed upon by ants and Passeriformes birds, whereas Vespinae are predominantly preyed upon by badgers, bears, and hawks. Ants and hornets are the primary predators of Stenogastrinae colonies. The probability of predation by these five main Orders of predators varies across continents. However, biogeographical variation in prey–predator trends was best predicted by climate (temperate vs. tropical). In social wasps’ evolutionary history, when colonies were small, predation pressure likely came from small mammals, lizards, or birds. As colonies evolved larger size and larger rewards for predators, the increased predation pressure likely selected for more effective defensive responses. Today, primary predators of large wasp colonies seem to be highly adapted to resist or avoid aggressive nest defense, such as large birds and mammals (which were not yet present when eusociality evolved in wasps), and ants

    Honey health benefits and uses in medicine

    Get PDF
    The generation of reactive oxygen species (ROS) and other free radicals during metabolism is an essential and normal process that ideally is compensated through the antioxidant system. However, due to many environmental, lifestyle, and pathological situations, free radicals and oxidants can be produced in excess, resulting in oxidative damage of biomolecules (e.g., lipids, proteins, and DNA). This plays a major role in the development of chronic and degenerative illness such as cancer, autoimmune disorders, aging, cataract, rheumatoid arthritis, cardiovascular, and neurodegenerative diseases (Pham-Huy et al. 2008; Willcox et al. 2004). The human body has several mechanisms to counteract oxidative stress by producing antioxidants, which are either naturally synthetized in situ, or externally supplied through foods, and/or supplements (Pham-Huy et al. 2008).info:eu-repo/semantics/publishedVersio

    Electrochemically synthesized polymers in molecular imprinting for chemical sensing

    Get PDF
    This critical review describes a class of polymers prepared by electrochemical polymerization that employs the concept of molecular imprinting for chemical sensing. The principal focus is on both conducting and nonconducting polymers prepared by electropolymerization of electroactive functional monomers, such as pristine and derivatized pyrrole, aminophenylboronic acid, thiophene, porphyrin, aniline, phenylenediamine, phenol, and thiophenol. A critical evaluation of the literature on electrosynthesized molecularly imprinted polymers (MIPs) applied as recognition elements of chemical sensors is presented. The aim of this review is to highlight recent achievements in analytical applications of these MIPs, including present strategies of determination of different analytes as well as identification and solutions for problems encountered

    Palynological, physicochemical, and microbiological attributes of organic lavender (Lavandula stoechas) honey from Portugal

    No full text
    At the present time, the quality, integrity, sanitation, and nutritional value of honeys receive attention on an international level due to the increasing content of chemicals in the aforementioned matrix. The present study aims to characterize organic honey (n=73) from Northeast Portugal, with respect to floral nectar origin, physicochemical parameters, microbial safety, and commercial quality. All organic honey samples can be classified as monofloral lavender (Lavandula stoechas L.), exceed in quality the international physicochemical standards, and show low microbiological counts (yeast, moulds, and aerobic mesophiles), with negative results in respect to faecal coliforms, Salmonella, and sulphite-reducing clostridia. Correlating the palynological, physicochemical, and microbiological results is necessary in order to check the authenticity, quality, and sanitation of honey
    corecore