117 research outputs found

    The Future Water Risks Under Global Change in Southern and Eastern Asia: Implications of Mitigation

    Get PDF
    Understanding and predicting the future vulnerability of freshwater resources is a major challenge with important societal implications. Many studies have identified Asia as a hotspot of severe water stress in the coming decades, and also highlighted the large uncertainty associated with water resource assessment based on limited multi-model projections. Here we provide a more comprehensive risk-based assessment of water use and availability in response to future climate change, socioeconomic growth, and their combination in Southern and Eastern Asia. We employ a large ensemble of scenarios that capture the spectrum of regional climate response as well as a range of economic projections and climate policies in a consistent, integrated modeling framework. We show that economic growth increases water stress ubiquitously. The climate-only and combined climate-growth effects on water stress remain largely negative in China and Indus Basin, but largely positive in India, Indochina, and Ganges Basin. However, climate poses substantially large uncertainty in water stress changes than socioeconomic growth. By 2050, socioeconomic growth alone can lead to an additional 650 million people living under at least “heavy” water stress, with most of these located in India, Indus Basin, and China. The combined effects of socioeconomic growth and climate change reduce people under water stress to an additional 200 million, attributed mainly to the beneficial climate in India that moves its heavily-stressed condition into the slightly or moderately‑stressed conditions. These 200 million people primarily reside in Indus Basin and China under at least overly exploited water conditions— where total water requirements will consistently exceed surface water supply. Climate mitigation helps alleviating the risks of increasing water scarcity by midcentury, but to a limited extent. Therefore, adaptive measures need to be taken to meet these surface water shortfalls, or a combination of both approaches may be most effective.This work was supported by the Department of Energy under An Integrated Framework for Climate Change Assessment (DE-FG02-94ER61937) and other government, industry and foundation sponsors of the MIT Joint Program on the Science and Policy of Global Change. For a complete list of sponsors and U.S. government funding sources, see http://globalchange.mit.edu/sponsors

    A Framework for Analysis of the Uncertainty of Socioeconomic Growth and Climate Change on the Risk of Water Stress: a Case Study in Asia

    Get PDF
    The sustainability of future water resources is of paramount importance and is affected by many factors, including population, wealth and climate. Inherent in how these factors change in the future is the uncertainty of their prediction. In this study, we integrate a large ensemble of scenarios—internally consistent across economics, emissions, climate, and population—to develop a risk portfolio of water stress over a large portion of Asia that includes China, India, and Mainland Southeast Asia. We isolate the effects of socioeconomic growth from the effects of climate change in order to identify the primary drivers of stress on water resources. We find that water needs related to socioeconomic changes, which are currently small, are likely to increase considerably in the future, often overshadowing the effect of climate change on levels of water stress. As a result, there is a high risk of severe water stress in densely populated watersheds by 2050, compared to recent history. If socio-economic growth is unconstrained by global actions to limit greenhouse gas concentrations, water-stressed populations may increase from about 800 million to 1.7 billion in this region.The Joint Program on the Science and Policy of Global Change is funded by a consortium of industrial and foundation sponsors. For the complete list see http://globalchange.mit.edu/sponsors/all

    Modeling Water Resource Systems under Climate Change: IGSM-WRS

    Get PDF
    Through the integration of a Water Resource System (WRS) component, the MIT Integrated Global System Model (IGSM) framework has been enhanced to study the effects of climate change on managed water-resource systems. Development of the WRS involves the downscaling of temperature and precipitation from the zonal representation of the IGSM to regional (latitude-longitude) scale, and the translation of the resulting surface hydrology to runoff at the scale of river basins, referred to as Assessment Sub-Regions (ASRs). The model of water supply is combined with analysis of water use in agricultural and non-agricultural sectors and with a model of water system management that allocates water among uses and over time and routes water among ASRs. Results of the IGSM-WRS framework include measures of water adequacy and ways it is influenced by climate change. Here we document the design of WRS and its linkage to other components of the IGSM, and present tests of consistency of model simulations with the historical record.The Joint Program on the Science and Policy of Global Change is funded by the U.S. Department of Energy, Office of Science under grants DE-FG02-94ER61937, DE-FG02-93ER61677, DEFG02- 08ER64597, and DE-FG02-06ER64320; the U.S. Environmental Protection Agency under grants XA-83344601-0, XA-83240101, XA-83042801-0, PI-83412601-0, RD-83096001, and RD- 83427901-0; the U.S. National Science Foundation under grants SES-0825915, EFRI-0835414, ATM-0120468, BCS-0410344, ATM-0329759, and DMS-0426845; the U.S. National Aeronautics and Space Administration under grants NNX07AI49G, NNX08AY59A, NNX06AC30A, NNX09AK26G, NNX08AL73G, NNX09AI26G, NNG04GJ80G, NNG04GP30G, and NNA06CN09A; the U.S. National Oceanic and Atmospheric Administration under grants DG1330-05-CN-1308, NA070AR4310050, and NA16GP2290; the U.S. Federal Aviation Administration under grant 06-C-NE-MIT; the Electric Power Research Institute under grant EPP32616/ C15124; and a consortium of 40 industrial and foundation sponsors (for the complete list see http://globalchange.mit.edu/sponsors/current.html)

    Scenarios of Global Change: Integrated Assessment of Climate Impacts

    Get PDF
    Using the MIT Integrated Global System Modeling (IGSM) framework, we assess the climate impacts of emission scenarios exhibiting global mean surface temperatures ranging between 2.4°C and 4.3°C above pre-industrial by 2100. We compare the outcomes from these forward-looking scenarios against the common goal described by the target-driven scenario of 2°C. Without further policy measures, the agreement at COP-21 in Paris is projected to result in a 3.5°C increase in global temperature in 2100 relative to pre-industrial levels. Scenarios developed by Shell International (called Mountains and Oceans) exhibit a substantial movement towards temperature stabilization, as they result in increases of only 2.4–2.7°C by 2100. Valuable components of these scenarios include a substantial shift to renewable energy and deployment of carbon capture and storage (CCS). These scenarios are successful in mitigating a large portion of water stress impacts and air pollution damages. They also significantly mitigate increases in ocean acidity. These projections show the significant value of policies that do not quite reach 2°C stabilization, but fall substantially close to that target by the end of the century. The challenge of meeting the Paris Agreement’s aspiration to limit warming to 1.5°C is monumental, yet may be desirable if societies see the 2°C impacts, described here, as running too much risk.The MIT Joint Program on the Science and Policy of Global Change is supported by the U.S. Department of Energy, Office of Science under grants DEFG02-94ER61937, DE-FG02-08ER64597, DE-FG02-93ER61677, DE-SC0003906, DE-SC0007114, XEU-0-9920-01; the U.S. Department of Energy, Oak Ridge National Laboratory under Subcontract 4000109855; the U.S. Environmental Protection Agency under grants XA-83240101, PIv83412601-0, RD-83427901-0, XA-83505101-0, XA-83600001-1, and subcontract UTA12-000624; the U.S. National Science Foundation under grants AGS-0944121, EFRI-0835414, IIS-1028163, ECCSv1128147, ARC- 1203526, EF-1137306, AGS-1216707, and SES-0825915; the U.S. National Aeronautics and Space Administration under grants NNX06AC30A, NNX07AI49G, NNX11AN72G and Sub Agreement No. 08-SFWS-209365.MIT; the U.S. Federal Aviation Administration under grants 06-C-NE-MIT, 09-C-NEMIT, Agmt. No. 4103-30368; the U.S. Department of Transportation under grant DTRT57-10-C-10015; the Electric Power Research Institute under grant EP-P32616/C15124, EP-P8154/C4106; the U.S. Department of Agriculture under grant 58-6000-2-0099, 58-0111-9-001; and a consortium of industrial and foundation sponsors (for the complete list see: globalchange.mit.edu/sponsors/all). Shell participated actively in this study, supplying all the background data behind their scenarios. MIT remain responsible for 32 all analysis and conclusions. Shell provided a gift of USD 250,000 to the MIT Joint Program, to defray costs related to this research. Martin Haigh represents the Scenarios Team at Shell International Ltd. The paper also benefited from comments from David Hone

    Cantor Digitalis: chironomic parametric synthesis of singing

    Get PDF
    Cantor Digitalis is a performative singing synthesizer that is composed of two main parts: a chironomic control interface and a parametric voice synthesizer. The control interface is based on a pen/touch graphic tablet equipped with a template representing vocalic and melodic spaces. Hand and pen positions, pen pressure, and a graphical user interface are assigned to specific vocal controls. This interface allows for real-time accurate control over high-level singing synthesis parameters. The sound generation system is based on a parametric synthesizer that features a spectral voice source model, a vocal tract model consisting of parallel filters for vocalic formants and cascaded with anti-resonance for the spectral effect of hypo-pharynx cavities, and rules for parameter settings and source/filter dependencies between fundamental frequency, vocal effort, and formants. Because Cantor Digitalis is a parametric system, every aspect of voice quality can be controlled (e.g., vocal tract size, aperiodicities in the voice source, vowels, and so forth). It offers several presets for different voice types. Cantor Digitalis has been played on stage in several public concerts, and it has also been proven to be useful as a tool for voice pedagogy. The aim of this article is to provide a comprehensive technical overview of Cantor Digitalis

    Who Needs Microtubules? Myogenic Reorganization of MTOC, Golgi Complex and ER Exit Sites Persists Despite Lack of Normal Microtubule Tracks

    Get PDF
    A wave of structural reorganization involving centrosomes, microtubules, Golgi complex and ER exit sites takes place early during skeletal muscle differentiation and completely remodels the secretory pathway. The mechanism of these changes and their functional implications are still poorly understood, in large part because all changes occur seemingly simultaneously. In an effort to uncouple the reorganizations, we have used taxol, nocodazole, and the specific GSK3-β inhibitor DW12, to disrupt the dynamic microtubule network of differentiating cultures of the mouse skeletal muscle cell line C2. Despite strong effects on microtubules, cell shape and cell fusion, none of the treatments prevented early differentiation. Redistribution of centrosomal proteins, conditional on differentiation, was in fact increased by taxol and nocodazole and normal in DW12. Redistributions of Golgi complex and ER exit sites were incomplete but remained tightly linked under all circumstances, and conditional on centrosomal reorganization. We were therefore able to uncouple microtubule reorganization from the other events and to determine that centrosomal proteins lead the reorganization hierarchy. In addition, we have gained new insight into structural and functional aspects of the reorganization of microtubule nucleation during myogenesis

    Four plant defensins from an indigenous South African Brassicaceae species display divergent activities against two test pathogens despite high sequence similarity in the encoding genes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Plant defensins are an important component of the innate defence system of plants where they form protective antimicrobial barriers between tissue types of plant organs as well as around seeds. These peptides also have other activities that are important for agricultural applications as well as the medical sector. Amongst the numerous plant peptides isolated from a variety of plant species, a significant number of promising defensins have been isolated from Brassicaceae species. Here we report on the isolation and characterization of four defensins from <it>Heliophila coronopifolia</it>, a native South African Brassicaceae species.</p> <p>Results</p> <p>Four defensin genes (<it>Hc-AFP1</it>-<it>4) </it>were isolated with a homology based PCR strategy. Analysis of the deduced amino acid sequences showed that the peptides were 72% similar and grouped closest to defensins isolated from other Brassicaceae species. The Hc-AFP1 and 3 peptides shared high homology (94%) and formed a unique grouping in the Brassicaceae defensins, whereas Hc-AFP2 and 4 formed a second homology grouping with defensins from <it>Arabidopsis </it>and <it>Raphanus</it>. Homology modelling showed that the few amino acids that differed between the four peptides had an effect on the surface properties of the defensins, specifically in the alpha-helix and the loop connecting the second and third beta-strands. These areas are implicated in determining differential activities of defensins. Comparing the activities after recombinant production of the peptides, Hc-AFP2 and 4 had IC<sub>50 </sub>values of 5-20 μg ml<sup>-1 </sup>against two test pathogens, whereas Hc-AFP1 and 3 were less active. The activity against <it>Botrytis cinerea </it>was associated with membrane permeabilization, hyper-branching, biomass reduction and even lytic activity. In contrast, only Hc-AFP2 and 4 caused membrane permeabilization and severe hyper-branching against the wilting pathogen <it>Fusarium solani</it>, while Hc-AFP1 and 3 had a mild morphogenetic effect on the fungus, without any indication of membrane activity. The peptides have a tissue-specific expression pattern since differential gene expression was observed in the native host. <it>Hc-AFP1 </it>and <it>3 </it>expressed in mature leaves, stems and flowers, whereas <it>Hc-AFP2 </it>and <it>4 </it>exclusively expressed in seedpods and seeds.</p> <p>Conclusions</p> <p>Two novel Brassicaceae defensin sequences were isolated amongst a group of four defensin encoding genes from the indigenous South African plant <it>H. coronopifolia</it>. All four peptides were active against two test pathogens, but displayed differential activities and modes of action. The expression patterns of the peptide encoding genes suggest a role in protecting either vegetative or reproductive structures in the native host against pathogen attack, or roles in unknown developmental and physiological processes in these tissues, as was shown with other defensins.</p

    A New Immersed Boundary Method for Aeroacoustic Sound Prediction around Complex Geometries

    No full text
    corecore