3,097 research outputs found

    Differential Entropy on Statistical Spaces

    Full text link
    We show that the previously introduced concept of distance on statistical spaces leads to a straightforward definition of differential entropy on these statistical spaces. These spaces are characterized by the fact that their points can only be localized within a certain volume and exhibit thus a feature of fuzziness. This implies that Riemann integrability of relevant integrals is no longer secured. Some discussion on the specialization of this formalism to quantum states concludes the paper.Comment: 4 pages, to appear in the proceedings of the joint meeting of the 2nd International Conference on Cybernetics and Information Technologies, Systems and Applications (CITSA 2005) and the 11th International Conference on Information Systems Analysis and Synthesis (ISAS 2005), to be held in Orlando, USA, on July 14-17, 200

    Unsupervised Diverse Colorization via Generative Adversarial Networks

    Full text link
    Colorization of grayscale images has been a hot topic in computer vision. Previous research mainly focuses on producing a colored image to match the original one. However, since many colors share the same gray value, an input grayscale image could be diversely colored while maintaining its reality. In this paper, we design a novel solution for unsupervised diverse colorization. Specifically, we leverage conditional generative adversarial networks to model the distribution of real-world item colors, in which we develop a fully convolutional generator with multi-layer noise to enhance diversity, with multi-layer condition concatenation to maintain reality, and with stride 1 to keep spatial information. With such a novel network architecture, the model yields highly competitive performance on the open LSUN bedroom dataset. The Turing test of 80 humans further indicates our generated color schemes are highly convincible

    Penetration depth study of LaOs4_4Sb12_{12}: Multiband s-wave superconductivity

    Full text link
    We measured the magnetic penetration depth λ(T)\lambda(T) in single crystals of LaOs4_{4}Sb12_{12} (TcT_c=0.74 K) down to 85 mK using a tunnel diode oscillator technique. The observed low-temperature exponential dependence indicates a s-wave gap. Fitting the low temperature data to BCS s-wave expression gives the zero temperature gap value Δ(0)=(1.34±0.07)kBTc\Delta (0)= (1.34 \pm 0.07) k_B T_c which is significantly smaller than the BCS value of 1.76kBTck_B T_c. In addition, the normalized superfluid density ρ(T)\rho(T) shows an unusually long suppression near TcT_c, and are best fit by a two-band s-wave model.Comment: 5 pages, 2 figure

    China’s emerging global role: dissatisfied responsible great power

    Get PDF
    China has (re)emerged as a great power in a world not of its own making. The distribution of power in major organisations and the dominant norms of international interactions are deemed to unfairly favour the existing Western powers, and at times obstruct China’s ability to meet national development goals. Nevertheless, engaging the global economy has been a key source of economic growth (thus helping to maintain regime stability), and establishing China’s credentials as a responsible global actor is seen as a means of ensuring continued access to what China needs. As an emerging great power that is also still in many respects a developing country, China’s challenge is to change the global order in ways that do not cause global instability or generate crises that would damage China’s own ability to generate economic growth and ensure political stability

    Solar Capability Building Programme for Public Housing

    Get PDF
    AbstractExpanding the use of renewable energy such as solar photovoltaics (PV) is part of the Housing and Development Board's ongoing efforts to promote sustainable development and is in line with the second thrust of HDB's Roadmap for Better Living – to develop ‘Sustainable Towns’. Recognising the unique resource constraints of Singapore, HDB has looked towards solar PV. The Solar Capability Building Programme for public housing involves a wide-scale solar PV test-bedding in both new and existing towns. This paper documents the unique challenges that HDB faced (and still faces) in its drive towards sustainability, a key feature of which is the introduction of solar PV to public housing. The main sections covered are:•HDB's main objectives of starting the Solar Capability Building Programme,•The journey since 2008 till now,•HDB's vision of turning Punggol into a zero-energy (for common services) town,•Various challenges faced and how they were overcome,•Findings from the systems installed so far, and•The future direction HDB is headed in.The focus of the paper is on how HDB is working towards achieving its aims for the Solar Capability Building Programme despite the high solar PV system cost, small number of industry players and lack of grid parity or tariffs. It is an in-depth look into the ways in which HDB has chosen to push forward for solar PV despite the odds. Other governments and companies facing the same challenges can adopt similar methods to overcome them

    Binding Transition in Quantum Hall Edge States

    Get PDF
    We study a class of Abelian quantum Hall (QH) states which are topologically unstable (T-unstable). We find that the T-unstable QH states can have a phase transition on the edge which causes a binding between electrons and reduces the number of gapless edge branches. After the binding transition, the single-electron tunneling into the edge gains a finite energy gap, and only certain multi-electron co-tunneling (such as three-electron co-tunneling for ν=9/5\nu=9/5 edges) can be gapless. Similar phenomenon also appear for edge state on the boundary between certain QH states. For example edge on the boundary between ν=2\nu=2 and ν=1/5\nu=1/5 states only allow three-electron co-tunneling at low energies after the binding transition.Comment: 4 pages, RevTeX, 1 figur

    Electron operator at the edge of the 1/3 fractional quantum Hall liquid

    Full text link
    This study builds upon the work of Palacios and MacDonald (Phys. Rev. Lett. {\bf 76}, 118 (1996)), wherein they identify the bosonic excitations of Wen's approach for the edge of the 1/3 fractional quantum Hall state with certain operators introduced by Stone. Using a quantum Monte Carlo method, we extend to larger systems containing up to 40 electrons and obtain more accurate thermodynamic limits for various matrix elements for a short range interaction. The results are in agreement with those of Palacios and MacDonald for small systems, but offer further insight into the detailed approach to the thermodynamic limit. For the short range interaction, the results are consistent with the chiral Luttinger liquid predictions.We also study excitations using the Coulomb ground state for up to nine electrons to ascertain the effect of interactions on the results; in this case our tests of the chiral Luttinger liquid approach are inconclusive.Comment: 10 pages, 2 figure

    Constraints on the phase γ\gamma and new physics from BKπB\to K\pi Decays

    Full text link
    Recent results from CLEO on BKπB\to K\pi indicate that the phase γ\gamma may be substantially different from that obtained from other fit to the KM matrix elements in the Standard Model. We show that γ\gamma extracted using BKπ,ππB\to K\pi, \pi\pi is sensitive to new physics occurring at loop level. It provides a powerful method to probe new physics in electroweak penguin interactions. Using effects due to anomalous gauge couplings as an example, we show that within the allowed ranges for these couplings information about γ\gamma obtained from BKπ,ππB\to K \pi, \pi\pi can be very different from the Standard Model prediction.Comment: Revised version with analysis done using new data from CLEO. RevTex, 11 Pages with two figure
    corecore