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We study a class of Abelian quantum Hall (QH) states which are topologically unstable (T unstable).
We find that the T-unstable QH states can have a phase transition on the edge which causes a binding
between electrons and reduces the number of gapless edge branches. After the binding transition,
the single-electron tunneling into the edge gains a finite energy gap, and only certain multielectron
cotunneling (such as three-electron cotunneling for n � 9�5 edges) can be gapless. We point out that
the binding transition can also be viewed as an edge reconstruction transition.

PACS numbers: 73.40.Hm, 73.20.Dx
A large class of quantum Hall (QH) liquids [1] (almost
all those observed in experiments) is called Abelian QH
state. The topological orders [2,3] in the Abelian QH
liquids are labeled by a rank k integer symmetric matrix
K (called the K matrix) and a k dimensional integer
vector t (called the charge vector) [4]. �K , t� describe
the internal correlation in QH liquids and provide much
more information than filling fraction. In this paper we
will show that a QH liquid may have special properties
when �K , t� take a special form.

The effective theory for the �K , t� QH liquid is given
by the U(1) Chern-Simons (CS) theory [4]:

Lbulk � 2
1

4p
Kijaim≠najlemnl 2 eAmti≠nailemnl.

(1)

The above pure CS effective theory is dual to the
Ginzburg-Landau-CS effective theory obtained earlier [5].
�K , t� determine all the universal properties of the Abelian
QH states. For example, all the allowed quasiparticles
are labeled by k dimensional nonzero vector l with
integer elements. The electric charge and statistics of a
quasiparticle are given by

u � plTK21l, Qq � 2etTK21l , (2)

while the filling fraction is given by n � tT K21t. �K , t�
also determines the structure of edge excitations [3] (at
least for the sharp edges [6]).

According to Haldane [7], an Abelian quantum Hall
theory is T unstable if there exist quasiparticles (labeled
by m) that are both bosonic and charge neutral, i.e.,
mT K21m � 0 and tT K21m � 0. Such a vector m will
be called neutral null vector. Since these quasiparticles
carry trivial quantum numbers, their creation and anni-
hilation operators can appear in the Hamiltonian without
breaking any symmetries. By including them in Eq. (1), a
more generic effective theory can be obtained. In this pa-
per we will study the physical consequences of the these
operators on the edge states. Near the edge, these neutral
quasiparticle operators simply describe all kinds of charge
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transfers between different edge branches. We find that,
under the right conditions, they can cause a phase transi-
tion in the edge states. Such a transition will be called
binding transition in this paper.

Many QH states have neutral null vectors, such as the
n � 9�5 state with

K � Diag�1, 1, 25�, tT � �1, 1, 1� , (3)

where Diag�a1, a2, . . .� is a diagonal matrix with diagonal
elements a1, a2, . . . . Before the binding transition, the
edge state of the above QH state has three branches. The
single-electron tunneling is gapless. After the binding
transition, as we will see, the edge state has only one
gapless branch, and the single-electron tunneling opens
up a finite energy gap. Only three-electron cotunneling is
gapless.

The binding transition can also appear on the bound-
ary between two different QH liquids. The edge state
between two different QH liquids �K1, t1� and �K2, t2�
is described by K � K1 © �2K2�, t � t1 © t2. The
edge state will be called T unstable if the �K , t� has
nonzero neutral null vector m. For a sequence of hier-
archical QH liquids n � 1�3, 2�5, 3�7, . . . the edge state
between any two QH states in the sequence is T un-
stable since they are based on the same n � 1�3 state.
The edge excitations from the base 1�3 state can anni-
hilate each other. More nontrivial cases of T unstable
boundary can appear between hierarchical states based on
different QH liquids. We find T unstable edge states
between �2�5, 2�9�, �2�5, 3�13�, �2�9, 2�7�, �2�5, 1�7�,
�2�5, 2�13�, �1�9, 2�9�, . . . QH states. The simplest T un-
stable edge state is the one between n � 2 and n � 1�5
states. Such a edge state is equivalent to that of the
n � 9�5 state and has the same binding transition.

To show the above results, let us concentrate on the
simplest T -unstable systems, the n � 9�5 state described
by Eq. (3). The quasiparticle operators are labeled by
integer vectors l. The electron operators are those of
the quasiparticle operators which carry charge e and
have statistics u � �2n 1 1�p (i.e., the Fermi statistics).
© 1999 The American Physical Society 5563
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There are infinite many electron operators, which can be
labeled by two integers �k1, k2�:

lT
e � �k1, k2, 25�1 2 k1 2 k2�� . (4)

The n � 9�5 state has two neutral null vectors:

mT
1 � �21, 2, 5�, mT

2 � �2, 21, 5� . (5)

The edges of quantum Hall systems are described by a
chiral Luttinger liquid (xLL) theory. In imaginary time,
the corresponding xLL action contains N bosonic fields
fi and has the form [3]

Sedge �
1

4p

Z
dx dt�iKij≠xfi≠tfj 1 Vij≠xfi≠xfj� .

(6)

On the edge, quasiparticles are created by the vertex
operators, Vl � exp�iljfj�. The correlation function of
Vl has a form

QN1

k�1�x 1 iy1
k t�2ak

QN2

k�1�x 2 iy2
k t�2bk .

Here N1 and N2 are the numbers of positive and
negative eigenvalues of K; y

6
k , ak , bk are nonnegative

real numbers which depend on V and K . The sum of the
exponents D�l� � �

PN1

k�1 ak 1
PN2

k�1 bk��2 is the scaling
dimension of the operator Vl. Since the scaling dimension
D�l� is a function of V , it is useful to write V in such a
way that isolates the parts of V affecting D�l�. We will
follow the approach used in Ref. [8].

To calculate D�l�, we can simultaneously diagonalize
K and V through a basis change fi � Mijf̃j. This can
be done in two steps. First, we find an M1 that brings K
to the pseudoidentity IN2,N1 , i.e.,

MT
1 KM1 � IN2,N1 �

µ
2IN2 0

0 IN1

∂
. (7)

For the state n � 9�5, we find

M1 �

0BBBB@
25l2

2
2215l2

2
25l
p

5

2 1 5l 1 5l2 25l 2 5l2 5110l
p

5
2224l25l2

2
4l15l2

2
2225l

p
5

1CCCCA , (8)

and �N2, N1� � �1, 2�. Then we find the second ba-
sis change M2 in the proper pseudo-orthogonal group
SO�N2, N1� that diagonalizes V while leaving the pseu-
doidentity invariant. In the new basis f̃ � �M1M2�21f,

l̃ � MT
2 MT

1 l ,

K̃ � IN2,N1 � MT
2 MT

1 KM1M2 , (9)

Ṽ � MT
2 MT

1 VM1M2 .

The functions K�l� and D�l� are basis independent. Now
that both Ṽ and K̃21 become diagonal, the correlation
functions are trivial: �eif̃j�x,t�e2if̃j�0,0�� ~

1
x7iyjt

, where
the sign depends on whether f̃j appears with 21 or 11
in IN2,N1 . Consequently, the scaling dimension of the
operator exp�iljfj� is found to be D�l� � l̃j l̃j � liDijlj ,
with 2D � M1M2MT

2 MT
1 . Drawing analogy from special

relativity [8], we can factor M2 into a product of a
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symmetric positive matrix B analogous to the Lorentz
boost and an orthogonal matrix R: M2 � BR. 2D�l�
becomes

2D � M1M2MT
2 MT

1 � M1B2MT
1 . (10)

For the n � 9�5 state, the matrices B and R can be
parametrized as

B �

0BBB@
g gb1 gb2

gb1 1 1
g2b

2
1

g11
g2b1b2

g11

gb1
g2b1b2

g11 1 1
g2b

2
2

g11

1CCCA ,

R �

0B@ 1 0 0
0 cosw 2 sinw

0 sinw cosw

1CA ,

(11)

where g � 1�
p

1 2 b2. Note that V � �MT
1 �21 3

�MT
2 �21Ṽ �M1�21�M1�21; thus �l, b1, b2, w� and the three

diagonal elements in Ṽ , �y1, y2, y3�, can be viewed
as a parametrization of V . Since V contains only six
independent parameters, we may set one of the above
seven parameters to zero.

For neutral null vectors m1,2, the quasiparticle operators

Vma � eipax exp	i�ma�jfj
, a � 1, 2 (12)

carry trivial quantum number [9] and the generic edge
Hamiltonian/action contains a term G1Vm1 1 G2Vm2 1

H.c. The problem here is how this quasiparticle term
affects the dynamics of low lying edge excitations. First
let us consider when the quasiparticle term becomes a
relevant perturbation.

The scaling dimensions of Vm1,2 are found to be D�m1� �
g2	21 1 b1
2 and D�m2� �

1
4g2	2�14 1 30l 1 45l2� 1

�24 1 30l 1 45l2�b1 2 6
p

5 �1 1 3l�b2
2. Note that
D�m1,2� depend only on �l, b1, b2�, and in the rest of the
paper we will set one of the redundant parameter b2 � 0.

In one area of the b1-l plan, we find that both
D�m1,2� . 2 (see Fig. 1). In this case, both the neutral
quasiparticle operators are irrelevant and can be dropped
at low energies. Therefore in this area of the b1-l plan,
the neutral quasiparticle operators do not cause any insta-
bility, and the edge theory is still described by Eq. (6),

FIG. 1. Plot of scaling dimension of the two neutral null
operators for n � 9�5 edge as functions of �b1, l�. Dashed
lines indicate when operators become marginal [D�m� � 2] and
solid lines indicate the soluble case where [D�m� � 1].
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and has three gapless branches. We also see in Fig. 1 that
in another area, D�m1� , 2 and D�m2� . 2. In this case
only the Vm1 is relevant. In the following, we will drop
the Vm2 term and consider the effect of the Vm1 term.

In general, it is very difficult to solve our model
with a relevant quasiparticle operator. However, in a
special case when �m̃1�3 � 0 [where m̃1 � �M1M2�Tm1],
the problem can be simplified. This is because when
�m̃1�3 � 0 the mode described by f̃3 is decoupled from
the modes described by f̃1,2 even in the presence of the
Vm1 quasiparticle operator. In this case, at least the sector
described by f̃3 can be solved, which describes a gapless
edge mode. The condition for �m̃1�3 � 0 can be satisfied
if and only if w � 0, p .

Now let us concentrate on the dynamics of the decoupled
sector described by f̃1,2. First we will show that if in
addition to w � 0, p, we also have D�m1� � 1, then
the f̃1,2 sector can be solved exactly. The condition
for the operator Vm1 to have a scaling dimension 1 is
b1 � 0. Under this condition (note we have already set
b2 � 0 and w � 0, p), we have m̃1 � �21, 1, 0�. We can
fermionize exp�if̃1� ~ ea1xc1, exp�if̃2� ~ eia2xc2 with
properly chosen a1,2 to obtain Vm1 ~ c

y
1 c2 and

1
4p

" X
a�1,2

cy
a �≠t 1 �2�aya≠x 1 m�ca

1 �Gc
y
1 c2 1 H.c.� 1 ≠xf̃3≠tf̃3 1 y3�≠xf̃3�2

#
,

(13)

with m � p1�y1 1 y2�. Now we see that the system
described by Eq. (13) is a free fermion theory and is
exactly soluble. We note that when m fi 0, the two
fermions c1,2 have different Fermi momenta, and the
Gc

y
1 c2 term cannot mix the fermions at the Fermi surface.

Even though c
y
1 c2 has a scaling dimension less than

2, when G , m the c1,2 sector remains to be gapless.
The low lying excitations are described by gapless free
fermions c1,2 and bosons f̃3, and form three gapless
branches. We will call such a phase “three-branch phase.”
Only when G . m, the c1,2 sector can have a finite energy
gap, and there is only one gapless branch described by f̃3.
Such a phase will be called “one-branch phase.”

We note that the one-branch phase is very stable. In
respect to the one-branch fixed point, any change in V
(or in l, b1, w, y1, y2, y3) corresponds to an irrelevant
or exactly marginal perturbation. (Only a change in
y3 corresponds to an exactly marginal perturbation.) In
particular, if we change w away from 0, p , it will flow
back to 0, p at low energies. Therefore, the edge can
be in the one-branch phase for a finite volume in the
parameter space of V if G is large enough.

Now consider the correlation of a generic quasiparticle
operator Vl � eil?f � eil̃?f̂ , where l̃ � MT

2 MT
1 l. (Note

that, when l � le, Vl will describe an electron operator.)
In the three-branch phase, Vl has an algebraic correlation
which can be calculated through the bosonization. In the
one-branch phase, w flows to 0, p , �m̃1�3 � 0 and the
f̃3 sector decouples with the f̃1,2 sector. We may write
Vl as Vl � V 0

le
i�l̃�3f̃3 and V 0

l � ei�l̃�1f̃11i�l̃�1f̃2 . It is easy
to find �ei�l̃�3f̃3e2i�l̃�3f̃3� � �x 2 yt�2�l̃�2

3 . Thus we can
concentrate on the f̃1,2 sector and the correlation of V 0

l .
First we note that if we write the edge partition function

in the form of imaginary-time path integral and expand
it in power of G, the edge partition function will have
the same form as the partition function of a 2D Coulomb
gas. The “particles” in the Coulomb gas correspond
to Vm1 and Vy

m1
. The interaction potential is given by

2 ln�Vm1�z�Vy
m1

�0�� � D�m1� ln jzj2 if we assume, for the
time being, p1 � 0. When D�m1� , 2, the Coulomb
gas is in the plasma phase and the f̃1,2 sector has a
finite energy gap. In the Coulomb gas picture, calcu-
lating the correlation of V 0

l corresponds to calculating
the change DE in the energy of the Coulomb gas when
we insert two test charges corresponding to V 0

l and V
0y
l .

(The correlation function is given by e2DE .) From
the correlation 2 ln�V 0

l �z�Vy
m1

�0� . . .� � �l̃�1�m̃1�1 lnz� 1

�l̃�2�m̃1�2 lnz 1 . . . , we see that if 2�l̃�1�m̃1�1 1

�l̃�2�m̃1�2 � l̃K̃21m̃1 � lK21m1 � 0, then V 0
l will

indeed correspond to a charged particle in the Coulomb
gas, since the interaction potential is real. Thus in
the plasma phase, V 0

l will have a finite and con-
stant correlation at long distance due to the complete
screening of the plasma phase which gives DE � 0.
Now V 0

l can be replaced by a pure number and the
correlation of Vl is just �x 2 yt�2�l̃�2

3 . Note that
�m̃1�2

1 � �m̃1�2
2 and l̃K̃21m̃1 � 0 requires �l̃�2

1 � �l̃�2
2;

thus �l̃�2
3 � 2�l̃�2

1 1 �l̃�2
2 1 �l̃�2

3 � l̃K̃21l̃ � lK21l.
Therefore, �VlV

y
l � � �x 2 yt�2lK21l in the plasma phase

when lK21m1 � 0.
When lK21m1 fi 0, the interaction potential is a com-

plex function [4]. As the particles in the Coulomb gas
move around the test charge, the partition function can
have arbitrary phases which average out to zero, unless
the two test charges sit at the same space-time point.
Therefore, we expect V 0

l to have a short ranged corre-
lation in the plasma phase. As a consequence Vl also
has a short ranged correlation in the plasma phase when
lK21m1 fi 0.

In the above we have assumed that p1 � 0. If p1 fi 0
then we need G . m to open an energy gap in the f̃1,2
sector and to be in the one-branch phase. All the above
results remain to be valid if we regard the plasma phase
mentioned above as the one-branch phase.

Now let us apply the above results to the correlation
of the electron operator given by Vle , where le is given
in Eq. (4). We find that leK21m1 � 5 2 3�2k1 1 k2�,
which can never vanish for integer k1,2. This means that
the electron correlation is short ranged in space-time in the
one-branch phase. It costs a finite energy to add (remove)
an electron to (from) the edge in the one-branch phase.
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We next consider a more general n-electron operator
described by lT

ne � �k1, k2, 25�n 2 k1 2 k2��. We find
that lneK21m1 � 5n 2 3�2k1 1 k2�. Thus, in the one-
branch phase, n-electron operator is gapless if and only if
n is in multiples of 3. The correlation of the 3m-electron
operator Vl�3m�e has an algebraic decay if k2 � 5m 2 2k1.
The exponent is 5m2.

For a generic quasiparticle operator Vl, we find that
lK21m1 � 0 requires l3 � 2l2 2 l1. Only those quasi-
particles are gapless. The exponent of the quasiparticle
correlation is found to be �2l1 1 l2�2�5 and the charge of
the quasiparticle is 3�2l1 1 l2��5.

We see that the edge excitations in the one-branch
phase are exactly those of the 1�5 Laughlin state. But
the particles that form the Laughlin state carry charge
3e. Such a state is described by K � �5� and t � �3�.
Thus the transition from the three-branch phase to the
one-branch phase on the edge of the n � 9�5 state can
be viewed as a binding transition in which electrons form
triplet bound states.

There is another way to view the above results. We
know that after edge reconstruction [6], the K matrix that
describes the bulk state and the K matrix that describes
the edge state may be different: Kedge � Kbulk © K 0 ©
�2K 0�. Through a SL�3, Z� transformation, the �K , t�
of the n � 9�5 state Eq. (3) is equivalent to K �
Diag�5, 1, 21�, tT � �3, 1, 1�. This �K , t� can be viewed
as the edge K matrix Kedge, describing the reconstructed
edge of the charge-3e Laughlin state �K , t� � �5, 3�.
Therefore, the n � 9�5 state Eq. (3) is really the charge-
3e Laughlin state �K , t� � �5, 3�. The apparent difference
on edge is due to a edge reconstruction.

To summarize, we know that K � Diag�1, 1, 25� QH
state usually has three edge branches. However, if the
charge transfer described by Vm1 (see Fig. 2) is strong
enough, it will cause a binding transition on the edge. A
strong Vm1 can be caused by a strong interaction between
the three edge branches. If it is relevant [i.e., D�m1� , 2]
and carries zero momentum [i.e., p1 � 0 in Eq. (12), even
a weak Vm1 will cause a binding transition.

To see the physical effect of the binding transition, let
us consider tunneling between the n � 9�5 and the n �
1 (metallic) states [10]. Before the binding transition, all
three branches of the n � 9�5 state contribute to the ex-
ponent of the tunneling conductance at finite temperature.
After binding transition, the first two branches become
gapped, and there is only one gapless mode. Furthermore,
the single electron tunneling also opens up a finite gap.
Only three-electron cotunneling is gapless, which gives
5566
FIG. 2. The edge of the n � 9�5 bilayer state and the charge
transfer caused by the Vm1 operator.

I ~ V 13 at zero temperature and dI
dV jV�0 ~ T12 at finite

temperatures.
Experimentally, the n � 9�5 state is not spin polarized.

The tunneling process that causes the binding transition
also flip spins for single-layer systems. Thus, strong spin-
orbit coupling is necessary to see the binding transition in
single layer systems. It should be easier to observe the
binding transition in the bilayer n � 9�5 state.
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