274 research outputs found

    Scaling asymptotics for quantized Hamiltonian flows

    Full text link
    In recent years, the near diagonal asymptotics of the equivariant components of the Szeg\"{o} kernel of a positive line bundle on a compact symplectic manifold have been studied extensively by many authors. As a natural generalization of this theme, here we consider the local scaling asymptotics of the Toeplitz quantization of a Hamiltonian symplectomorphism, and specifically how they concentrate on the graph of the underlying classical map

    Local trace formulae and scaling asymptotics in Toeplitz quantization, II

    Full text link
    In the spectral theory of positive elliptic operators, an important role is played by certain smoothing kernels, related to the Fourier transform of the trace of a wave operator, which may be heuristically interpreted as smoothed spectral projectors asymptotically drifting to the right of the spectrum. In the setting of Toeplitz quantization, we consider analogues of these, where the wave operator is replaced by the Hardy space compression of a linearized Hamiltonian flow, possibly composed with a family of zeroth order Toeplitz operators. We study the local asymptotics of these smoothing kernels, and specifically how they concentrate on the fixed loci of the linearized dynamics.Comment: Typos corrected. Slight expository change

    The first coefficients of the asymptotic expansion of the Bergman kernel of the spin^c Dirac operator

    Full text link
    We establish the existence of the asymptotic expansion of the Bergman kernel associated to the spin-c Dirac operators acting on high tensor powers of line bundles with non-degenerate mixed curvature (negative and positive eigenvalues) by extending the paper " On the asymptotic expansion of Bergman kernel " (math.DG/0404494) of Dai-Liu-Ma. We compute the second coefficient b_1 in the asymptotic expansion using the method of our paper "Generalized Bergman kernels on symplectic manifolds" (math.DG/0411559).Comment: 21 pages, to appear in Internat. J. Math. Precisions added in the abstrac

    Toeplitz operators on symplectic manifolds

    Full text link
    We study the Berezin-Toeplitz quantization on symplectic manifolds making use of the full off-diagonal asymptotic expansion of the Bergman kernel. We give also a characterization of Toeplitz operators in terms of their asymptotic expansion. The semi-classical limit properties of the Berezin-Toeplitz quantization for non-compact manifolds and orbifolds are also established.Comment: 40 page

    Realizations of Differential Operators on Conic Manifolds with Boundary

    Full text link
    We study the closed extensions (realizations) of differential operators subject to homogeneous boundary conditions on weighted L_p-Sobolev spaces over a manifold with boundary and conical singularities. Under natural ellipticity conditions we determine the domains of the minimal and the maximal extension. We show that both are Fredholm operators and give a formula for the relative index.Comment: 41 pages, 1 figur

    The Zakharov-Shabat spectral problem on the semi-line: Hilbert formulation and applications

    Full text link
    The inverse spectral transform for the Zakharov-Shabat equation on the semi-line is reconsidered as a Hilbert problem. The boundary data induce an essential singularity at large k to one of the basic solutions. Then solving the inverse problem means solving a Hilbert problem with particular prescribed behavior. It is demonstrated that the direct and inverse problems are solved in a consistent way as soon as the spectral transform vanishes with 1/k at infinity in the whole upper half plane (where it may possess single poles) and is continuous and bounded on the real k-axis. The method is applied to stimulated Raman scattering and sine-Gordon (light cone) for which it is demonstrated that time evolution conserves the properties of the spectral transform.Comment: LaTex file, 1 figure, submitted to J. Phys.

    Fractional-order operators: Boundary problems, heat equations

    Full text link
    The first half of this work gives a survey of the fractional Laplacian (and related operators), its restricted Dirichlet realization on a bounded domain, and its nonhomogeneous local boundary conditions, as treated by pseudodifferential methods. The second half takes up the associated heat equation with homogeneous Dirichlet condition. Here we recall recently shown sharp results on interior regularity and on LpL_p-estimates up to the boundary, as well as recent H\"older estimates. This is supplied with new higher regularity estimates in L2L_2-spaces using a technique of Lions and Magenes, and higher LpL_p-regularity estimates (with arbitrarily high H\"older estimates in the time-parameter) based on a general result of Amann. Moreover, it is shown that an improvement to spatial CC^\infty -regularity at the boundary is not in general possible.Comment: 29 pages, updated version, to appear in a Springer Proceedings in Mathematics and Statistics: "New Perspectives in Mathematical Analysis - Plenary Lectures, ISAAC 2017, Vaxjo Sweden

    Algebraic construction of the Darboux matrix revisited

    Full text link
    We present algebraic construction of Darboux matrices for 1+1-dimensional integrable systems of nonlinear partial differential equations with a special stress on the nonisospectral case. We discuss different approaches to the Darboux-Backlund transformation, based on different lambda-dependencies of the Darboux matrix: polynomial, sum of partial fractions, or the transfer matrix form. We derive symmetric N-soliton formulas in the general case. The matrix spectral parameter and dressing actions in loop groups are also discussed. We describe reductions to twisted loop groups, unitary reductions, the matrix Lax pair for the KdV equation and reductions of chiral models (harmonic maps) to SU(n) and to Grassmann spaces. We show that in the KdV case the nilpotent Darboux matrix generates the binary Darboux transformation. The paper is intended as a review of known results (usually presented in a novel context) but some new results are included as well, e.g., general compact formulas for N-soliton surfaces and linear and bilinear constraints on the nonisospectral Lax pair matrices which are preserved by Darboux transformations.Comment: Review paper (61 pages). To be published in the Special Issue "Nonlinearity and Geometry: Connections with Integrability" of J. Phys. A: Math. Theor. (2009), devoted to the subject of the Second Workshop on Nonlinearity and Geometry ("Darboux Days"), Bedlewo, Poland (April 2008

    Crystal structure of rhodopsin bound to arrestin by femtosecond X-ray laser.

    Get PDF
    G-protein-coupled receptors (GPCRs) signal primarily through G proteins or arrestins. Arrestin binding to GPCRs blocks G protein interaction and redirects signalling to numerous G-protein-independent pathways. Here we report the crystal structure of a constitutively active form of human rhodopsin bound to a pre-activated form of the mouse visual arrestin, determined by serial femtosecond X-ray laser crystallography. Together with extensive biochemical and mutagenesis data, the structure reveals an overall architecture of the rhodopsin-arrestin assembly in which rhodopsin uses distinct structural elements, including transmembrane helix 7 and helix 8, to recruit arrestin. Correspondingly, arrestin adopts the pre-activated conformation, with a ∼20° rotation between the amino and carboxy domains, which opens up a cleft in arrestin to accommodate a short helix formed by the second intracellular loop of rhodopsin. This structure provides a basis for understanding GPCR-mediated arrestin-biased signalling and demonstrates the power of X-ray lasers for advancing the frontiers of structural biology
    corecore