206 research outputs found

    Poly(ADP-ribose)glycohydrolase is an upstream regulator of Ca2+ fluxes in oxidative cell death

    Get PDF
    Oxidative DNA damage to cells activates poly(ADP-ribose)polymerase-1 (PARP-1) and the poly(ADP-ribose) formed is rapidly degraded to ADP-ribose by poly(ADP-ribose)glycohydrolase (PARG). Here we show that PARP-1 and PARG control extracellular Ca2+ fluxes through melastatin-like transient receptor potential 2 channels (TRPM2) in a cell death signaling pathway. TRPM2 activation accounts for essentially the entire Ca2+ influx into the cytosol, activating caspases and causing the translocation of apoptosis inducing factor (AIF) from the inner mitochondrial membrane to the nucleus followed by cell death. Abrogation of PARP-1 or PARG function disrupts these signals and reduces cell death. ADP-ribose-loading of cells induces Ca2+ fluxes in the absence of oxidative damage, suggesting that ADP-ribose is the key metabolite of the PARP-1/PARG system regulating TRPM2. We conclude that PARP-1/PARG control a cell death signal pathway that operates between five different cell compartments and communicates via three types of chemical messengers: a nucleotide, a cation, and protein

    Porcine commensal escherichia coli: A reservoir for class 1 integrons associated with IS26

    Full text link
    © 2017 The Authors. Porcine faecal waste is a serious environmental pollutant. Carriage of antimicrobial-resistance genes (ARGs) and virulenceassociated genes (VAGs), and the zoonotic potential of commensal Escherichia coli from swine are largely unknown. Furthermore, little is known about the role of commensal E. coli as contributors to the mobilization of ARGs between food animals and the environment. Here, we report whole-genome sequence analysis of 103 class 1 integron-positive E. coli from the faeces of healthy pigs from two commercial production facilities in New South Wales, Australia. Most strains belonged to phylogroups A and B1, and carried VAGs linked with extraintestinal infection in humans. The 103 strains belonged to 37 multilocus sequence types and clonal complex 10 featured prominently. Seventeen ARGs were detected and 97% (100/103) of strains carried three or more ARGs. Heavy-metal-resistance genes merA, cusA and terA were also common. IS26 was observed in 98% (101/103) of strains and was often physically associated with structurally diverse class 1 integrons that carried unique genetic features, which may be tracked. This study provides, to our knowledge, the first detailed genomic analysis and point of reference for commensal E. coli of porcine origin in Australia, facilitating tracking of specific lineages and the mobile resistance genes they carry

    Transport Properties of Compensated µc-Si:H

    Get PDF

    Stable transduction with lentiviral vectors and amplification of immature hematopoietic progenitors from cord blood of preterm human fetuses

    Get PDF
    Umbilical cord blood (CB) from the early gestational human fetus is recognized as a rich source of hematopoietic stem cells. To examine the value of fetal CB for gene therapy of inborn immunohematopoietic disorders, we tested the feasibility of genetic modification of CD34(+) cells from CB at weeks 24 to 34 of pregnancy, using lentiviral vector-mediated transfer of the green fluorescent protein (GFP) gene. The transduction rate of CD34(+) cells was 42 +/- 9%, resulting in GFP expression in 23 +/- 4% of colonies derived from colony-forming units (CFUs) and 11 +/- 1% from primitive long-term culture-initiating cells (LTC-ICs). Cell cycle analysis demonstrated transduction and GFP expression in cells in the G(0) phase, which contains immature hematopoietic progenitors. Transduced fetal CD34(+) cells could be expanded 1000-fold in long-term cultures supplemented with megakaryocyte growth and development factor along with Flt-3 ligand. At week 10, expression of GFP was observed in 40.5 +/- 11.7% of CFU-derived colonies. While prestimulation of CD34(+) cells with cytokines prior to transduction increased the efficiency of GFP transfer 2- to 3-fold, long-term maintenance of GFP-expressing CFUs occurred only in the absence of prestimulation. The GFP gene was found integrated into the genomic DNA of 35% of LTC-IC-derived colonies initiated at week 10, but GFP expression was not detectable, suggesting downregulation of transgene activity during the extended culture period. These results indicate that human fetal CB progenitors are amenable to genetic modification by lentiviral vectors and may serve as a target for gene therapy of hematopoietic disorders by prenatal autologous transplantation

    An amorphous silicon photodiode array for glass-based optical MEMS application

    Get PDF
    A highly sensitive photo-detector array deposited on a glass substrate with an optional integrated optical filter have been presented. The active element is a vertically integrated hydrogenated amorphous silicon photodiode featuring a dark current of less than 1e-10 A/cm2 for -3V polarization and a maximal quantum efficiency of 80% near 580 nm. The prototype was encapsulated and successfully tested optically. It has a fill factor of only 44% which, however, can be easily increased to 90% using flip-chip bonding to an integrated electronic circuit for signal conditioning. The sensor is biocompatible and can be integrated with other glass-based and glass compatible micro-fabricated devices such as optical, microfluidic, lab-on-a-chip, chemical and biological devices in which photo-detection is a desired feature. ©2009 IEEE

    Thin-film silicon detectors for particle detection

    Get PDF
    Integrated particle sensors have been developed using thin-film on ASIC technology. For this purpose, hydrogenated amorphous silicon diodes, in various configurations, have been optimized for particle detection. These devices were first deposited on glass substrates to optimize the material properties and the dark current of very thick diodes (with thickness up to 50 μm). Corresponding diodes were later directly deposited on CMOS readout chips. These integrated particle sensors have been characterized using light pulse illumination and beta particle irradiation from 63Ni and 90Sr sources. Direct detection of single low- and high-energy beta particles have been demonstrated. The application of this new integrated particle sensor concept for medical imaging is also discussed
    corecore