293 research outputs found
Drip water electrical conductivity as an indicator of cave ventilation at the event scale
The use of speleothems to reconstruct past climatic and environmental change through chemical proxies is becoming increasingly common. Speleothem chemistry is controlled by hydrological and atmospheric processes which vary over seasonal time scales. However, as many reconstructions using speleothem carbonate are now endeavouring to acquire information about precipitation and temperature dynamics at a scale that can capture short term hydrological events, our understanding of within cave processes must match this resolution. Monitoring within Cueva de Asiul (N. Spain) has identified rapid (hourly resolution) changes in drip water electrical conductivity (EC), which is regulated by the pCO2 in the cave air. Drip water EC is therefore controlled by different modes of cave ventilation. In Cueva de Asiul a combination of density differences, and external pressure changes control ventilation patterns. Density driven changes in cave ventilation occur on a diurnal scale at this site irrespective of season, driven by fluctuations in external temperature across the cave internal temperature threshold. As external temperatures drop below those within the cave low pCO2 external air enters the void, facilitating the deposition of speleothem carbonate and causing a reduction in measured drip water EC. Additionally, decreases in external pressure related to storm activity act as a secondary ventilation mechanism. Reductions in external air pressure cause a drop in cave air pressure, enhancing karst air draw down, increasing the pCO2 of the cave and therefore the EC measured within drip waters. EC thereby serves as a first order indicator of cave ventilation, regardless of changes in speleothem drip rates and karst hydrological conditions. High resolution monitoring of cave drip water electrical conductivity reveals the highly sensitive nature of ventilation dynamics within cave environments, and highlights the importance of this for understanding trace element incorporation into speleothem carbonate at the event scale
Bostonia: The Boston University Alumni Magazine. Volume 34
Founded in 1900, Bostonia magazine is Boston University's main alumni publication, which covers alumni and student life, as well as university activities, events, and programs
Pointcatcher software:analysis of glacial time-lapse photography and integration with multi-temporal digital elevation models
Terrestrial time-lapse photography offers insight into glacial processes through high spatial and temporal resolution imagery. However, oblique camera views complicate measurement in geographic coordinates, and lead to reliance on specific imaging geometries or simplifying assumptions for calculating parameters such as ice velocity. We develop a novel approach that integrates time-lapse imagery with multi-temporal digital elevation models to derive full 3D coordinates for natural features tracked throughout a monoscopic image sequence. This enables daily independent measurement of horizontal (ice flow) and vertical (ice melt) velocities. By combining two terrestrial laser scanner surveys with a 73-day sequence from Sólheimajökull, Iceland, variations in horizontal ice velocity of ~10% were identified over timescales of ~25 days. An overall surface elevation decrease of ~3.0 m showed rate changes asynchronous with the horizontal velocity variations, demonstrating a temporal disconnect between the processes of ice surface lowering and mechanisms of glacier movement. Our software, ‘Pointcatcher’, is freely available for user-friendly interactive processing of general time-lapse sequences and includes Monte Carlo error analysis and uncertainty projection onto DEM surfaces. It is particularly suited for analysis of challenging oblique glacial imagery, and we discuss good features to track, both for correction of camera motion and for deriving ice velocities
North Atlantic forcing of moisture delivery to Europe throughout the Holocene
Century-to-millennial scale fluctuations in precipitation and temperature are an established feature of European Holocene climates. Changes in moisture delivery are driven by complex interactions between ocean moisture sources and atmospheric circulation modes, making it difficult to resolve the drivers behind millennial scale variability in European precipitation. Here, we present two overlapping decadal resolution speleothem oxygen isotope (δ18O) records from a cave on the Atlantic coastline of northern Iberia, covering the period 12.1–0 ka. Speleothem δ18O reveals nine quasi-cyclical events of relatively wet-to-dry climatic conditions during the Holocene. Dynamic Harmonic Regression modelling indicates that changes in precipitation occurred with a ~1500 year frequency during the late Holocene and at a shorter length during the early Holocene. The timing of these cycles coincides with changes in North Atlantic Ocean conditions, indicating a connectivity between ocean conditions and Holocene moisture delivery. Early Holocene climate is potentially dominated by freshwater outburst events, whilst ~1500 year cycles in the late Holocene are more likely driven by changes internal to the ocean system. This is the first continental record of its type that clearly demonstrates millennial scale connectivity between the pulse of the ocean and precipitation over Europe through the entirety of the Holocene
Recommended from our members
Revisiting an Old Riddle: What Determines Genetic Diversity Levels within Species?
Understanding why some species have more genetic diversity than others is central to the study of ecology and evolution, and carries potentially important implications for conservation biology. Yet not only does this question remain unresolved, it has largely fallen into disregard. With the rapid decrease in sequencing costs, we argue that it is time to revive it.</p
Interpretation and application of carbon isotope ratios in freshwater diatom silica
Carbon incorporated into diatom frustule walls is protected from degradation enabling analysis for carbon isotope composition (δ13Cdiatom). This presents potential for tracing carbon cycles via a single photosynthetic host with well-constrained ecophysiology. Improved understanding of environmental processes controlling carbon delivery and assimilation is essential to interpret changes in freshwater δ13Cdiatom. Here relationships between water chemistry and δ13Cdiatom from contemporary regional data sets are investigated. Modern diatom and water samples were collected from river catchments within England and lake sediments from across Europe. The data suggest dissolved, biogenically produced carbon supplied proportionately to catchment productivity was critical in the rivers and soft water lakes. However, dissolved carbon from calcareous geology overwhelmed the carbon signature in hard water catchments. Both results demonstrate carbon source characteristics were the most important control on δ13Cdiatom, with a greater impact than productivity. Application of these principles was made to a sediment record from Lake Tanganyika. δ13Cdiatom co-varied with δ13Cbulk through the last glacial and Holocene. This suggests carbon supply was again dominant and exceeded authigenic demand. This first systematic evaluation of contemporary δ13Cdiatom controls demonstrates that diatoms have the potential to supply a record of carbon cycling through lake catchments from sediment records over millennial timescales
The Ernesto Cave, northern Italy, as a candidate auxiliary reference section for the definition of the Anthropocene series
Annually laminated stalagmites ER77 and ER78 from Grotta di Ernesto provide an accurate annual record of environmental and anthropogenic signals for the last ~200 years. Two major transitions are recorded in the stalagmites. The first coincides with the year 1840 CE, when a change from porous and impurity-rich-laminae to clean, translucent laminae occurs. This is accompanied by a steady increase in the growth rate, a decrease in fluorescence and a sharp increase in δ13C values. These changes concur with the end of the Little Ice Age. The second transition takes place around the year 1960 CE and corresponds with an increase in both annual growth rate and sulfur concentration in stalagmite ER78 at 4.2 mm from the top, and with the deflection point in the 14C activity curve in stalagmite ER77 at 4.8 mm from the top. This latter is the stratigraphic signal proposed as the primary guide for the definition of the Anthropocene series. The following shift toward depleted δ34S–SO4 in stalagmite ER78 suggests that industrial pollution is a major source of sulfur. The interpretation of atmospheric signals (S, δ34S, 14C) in the stalagmites is affected by attenuation and time lags and the environmental signals are influenced by soil and ecosystem processes, while other anthropogenic signals (δ15N, 239Pu) are not recorded. For these reasons, the stalagmite record is here proposed as an auxiliary (reference) section rather than a global standard. In summary, Grotta di Ernesto contains one of the best stalagmite records documenting the Anthropocene, and one of only two stalagmite records where the S peak has been measured at high resolution
Roles of forest bioproductivity, transpiration and fire in a nine-year record of cave dripwater chemistry from southwest Australia
Forest biomass has the potential to significantly impact the chemistry and volume of diffuse recharge to cave dripwater via the processes of nutrient uptake, transpiration and forest fire. Yet to-date, this role has been under-appreciated in the interpretation of speleothem trace element records from forested catchments. In this study, the impact of vegetation is examined and quantified in a long-term monitoring program from Golgotha Cave, SW Australia. The contribution of salts from rain and dry-deposition of aerosols and dissolved elements from soil mineral and bedrock dissolution to dripwater chemistry are also examined. This study is an essential pre-requisite for the future interpretation of trace element data from SW Australian stalagmite records, whose record of past environmental change will include alterations in these biogeochemical fluxes. Solute concentrations in dripwater vary spatially, supporting the existence of distinct flow paths governed by varying amounts of transpiration as well as nutrient uptake by deeply-rooted biomass. Applying principal components analysis, we identify a common pattern of variation in dripwater Cl, Mg, K, Ca, Sr and Si, interpreted as reflecting increasing transpiration, due to forest growth. Mass-balance calculations show that increasing elemental sequestration into biomass has the largest impact on SO4, providing an explanation for the overall falling dripwater SO4 concentrations through time, in contrast to the transpiration-driven rising trend dominating other ions. The long-term rise in transpiration and nutrient uptake driven by increased forest bioproductivity and its impact on our dripwater chemistry is attributed to i. the post-fire recovery of the forest understorey after fire impacted the site in 2006 CE; ii. and/or increased water and nutrient demand as trees in the overlying forest mature. The impact of climate-driven changes on the water balance is also examined. Finally, the implications for interpreting SW Australian speleothem trace element records are discussed
Arginase-1–Expressing Macrophages Suppress Th2 Cytokine–Driven Inflammation and Fibrosis
Macrophage-specific expression of Arginase-1 is commonly believed to promote inflammation, fibrosis, and wound healing by enhancing L-proline, polyamine, and Th2 cytokine production. Here, however, we show that macrophage-specific Arg1 functions as an inhibitor of inflammation and fibrosis following infection with the Th2-inducing pathogen Schistosoma mansoni. Although susceptibility to infection was not affected by the conditional deletion of Arg1 in macrophages, Arg1−/flox;LysMcre mice died at an accelerated rate. The mortality was not due to acute Th1/NOS2-mediated hepatotoxicity or endotoxemia. Instead, granulomatous inflammation, liver fibrosis, and portal hypertension increased in infected Arg1−/flox;LysMcre mice. Similar findings were obtained with Arg1flox/flox;Tie2cre mice, which delete Arg1 in all macrophage populations. Production of Th2 cytokines increased in the infected Arg1−/flox;LysMcre mice, and unlike alternatively activated wild-type macrophages, Arg1−/flox;LysMcre macrophages failed to inhibit T cell proliferation in vitro, providing an underlying mechanism for the exacerbated Th2 pathology. The suppressive activity of Arg1-expressing macrophages was independent of IL-10 and TGF-β1. However, when exogenous L-arginine was provided, T cell proliferation was restored, suggesting that Arg1-expressing macrophages deplete arginine, which is required to sustain CD4+ T cell responses. These data identify Arg1 as the essential suppressive mediator of alternatively activated macrophages (AAM) and demonstrate that Arg1-expressing macrophages function as suppressors rather than inducers of Th2-dependent inflammation and fibrosis
- …