1,526 research outputs found

    An efficient record linkage scheme using graphical analysis for identifier error detection

    Get PDF
    Integration of information on individuals (record linkage) is a key problem in healthcare delivery, epidemiology, and "business intelligence" applications. It is now common to be required to link very large numbers of records, often containing various combinations of theoretically unique identifiers, such as NHS numbers, which are both incomplete and error-prone

    MRI Based Localisation and Quantification of Abscesses following Experimental S. aureus Intravenous Challenge: Application to Vaccine Evaluation.

    Get PDF
    PURPOSE: To develop and validate a sensitive and specific method of abscess enumeration and quantification in a preclinical model of Staphylococcus aureus infection. METHODS: S. aureus infected murine kidneys were fixed in paraformaldehyde, impregnated with gadolinium, and embedded in agar blocks, which were subjected to 3D magnetic resonance microscopy on a 9.4T MRI scanner. Image analysis techniques were developed, which could identify and quantify abscesses. The result of this imaging was compared with histological examination. The impact of a S. aureus Sortase A vaccination regime was assessed using the technique. RESULTS: Up to 32 murine kidneys could be imaged in a single MRI run, yielding images with voxels of about 25 μm3. S. aureus abscesses could be readily identified in blinded analyses of the kidneys after 3 days of infection, with low inter-observer variability. Comparison with histological sections shows a striking correlation between the two techniques: all presumptive abscesses identified by MRI were confirmed histologically, and histology identified no abscesses not evident on MRI. In view of this, simulations were performed assuming that both MRI reconstruction, and histology examining all sections of the tissue, were fully sensitive and specific at abscess detection. This simulation showed that MRI provided more sensitive and precise estimates of abscess numbers and volume than histology, unless at least 5 histological sections are taken through the long axis of the kidney. We used the MRI technique described to investigate the impact of a S. aureus Sortase A vaccine. CONCLUSION: Post mortem MRI scanning of large batches of fixed organs has application in the preclinical assessment of S. aureus vaccines

    Identification of 34 Novel Proinflammatory Proteins in a Genome-Wide Macrophage Functional Screen

    Get PDF
    Signal transduction pathways activated by Toll-like Receptors and the IL-1 family of cytokines are fundamental to mounting an innate immune response and thus to clearing pathogens and promoting wound healing. Whilst mechanistic understanding of the regulation of innate signalling pathways has advanced considerably in recent years, there are still a number of critical controllers to be discovered. In order to characterise novel regulators of macrophage inflammation, we have carried out an extensive, cDNA-based forward genetic screen and identified 34 novel activators, based on their ability to induce the expression of cxcl2. Many are physiologically expressed in macrophages, although the majority of genes uncovered in our screen have not previously been linked to innate immunity. We show that expression of particular activators has profound but distinct impacts on LPS-induced inflammatory gene expression, including switch-type, amplifier and sensitiser behaviours. Furthermore, the novel genes identified here interact with the canonical inflammatory signalling network via specific mechanisms, as demonstrated by the use of dominant negative forms of IL1/TLR signalling mediators

    Identification of Antigens Specific to Non-Tuberculous Mycobacteria: The Mce Family of Proteins as a Target of T Cell Immune Responses

    Get PDF
    The lack of an effective TB vaccine hinders current efforts in combating the TB pandemic. One theory as to why BCG is less protective in tropical countries is that exposure to non-tuberculous mycobacteria (NTM) reduces BCG efficacy. There are currently several new TB vaccines in clinical trials, and NTM exposure may also be relevant in this context. NTM exposure cannot be accurately evaluated in the absence of specific antigens; those which are known to be present in NTM and absent from M. tuberculosis and BCG. We therefore used a bioinformatic pipeline to define proteins which are present in common NTM and absent from the M. tuberculosis complex, using protein BLAST, TBLASTN and a short sequence protein BLAST to ensure the specificity of this process. We then assessed immune responses to these proteins, in healthy South Africans and in patients from the United Kingdom and United States with documented exposure to NTM. Low level responses were detected to a cluster of proteins from the mammalian cell entry family, and to a cluster of hypothetical proteins, using ex vivo ELISpot and a 6 day proliferation assay. These early findings may provide a basis for characterising exposure to NTM at a population level, which has applications in the field of TB vaccine design as well as in the development of diagnostic tests

    Decline of meticillin-resistant Staphylococcus aureus in Oxfordshire hospitals is strain-specific and preceded infection-control intensification

    Get PDF
    Background In the past, strains of Staphylococcus aureus have evolved, expanded, made a marked clinical impact and then disappeared over several years. Faced with rising meticillin-resistant S aureus (MRSA) rates, UK government-supported infection control interventions were rolled out in Oxford Radcliffe Hospitals NHS Trust from 2006 onwards. Methods Using an electronic Database, the authors identified isolation of MRS among 611 434 hospital inpatients admitted to acute hospitals in Oxford, UK, 1 April 1998 to 30 June 2010. Isolation rates were modelled using segmented negative binomial regression for three groups of isolates: from blood cultures, from samples suggesting invasion (eg, cerebrospinal fluid, joint fluid, pus samples) and from surface swabs (eg, from wounds). Findings MRSA isolation rates rose rapidly from 1998 to the end of 2003 (annual increase from blood cultures 23%, 95% CI 16% to 30%), and then declined. The decline accelerated from mid-2006 onwards (annual decrease post-2006 38% from blood cultures, 95% CI 29% to 45%, p=0.003 vs previous decline). Rates of meticillin-sensitive S aureus changed little by comparison, with no evidence for declines 2006 onward (p=0.40); by 2010, sensitive S aureus was far more common than MRSA (blood cultures: 2.9 vs 0.25; invasive samples 14.7 vs 2.0 per 10 000 bedstays). Interestingly, trends in isolation of erythromycin-sensitive and resistant MRSA differed. Erythromycin-sensitive strains rose significantly faster (eg, from blood cultures p=0.002), and declined significantly more slowly (p=0.002), than erythromycin-resistant strains (global p<0.0001). Bacterial typing suggests this reflects differential spread of two major UK MRSA strains (ST22/36), ST36 having declined markedly 2006-2010, with ST22 becoming the dominant MRSA strain. Conclusions MRSA isolation rates were falling before recent intensification of infection-control measures. This, together with strain-specific changes in MRSA isolation, strongly suggests that incompletely understood biological factors are responsible for the much recent variation in MRSA isolation. A major, mainly meticillin-sensitive, S aureus burden remains

    The Subtype of GluN2 C-terminal Domain Determines the Response to Excitotoxic Insults

    Get PDF
    It is currently unclear whether the GluN2 subtype influences NMDA receptor (NMDAR) excitotoxicity. We report that the toxicity of NMDAR-mediated Ca(2+) influx is differentially controlled by the cytoplasmic C-terminal domains of GluN2B (CTD(2B)) and GluN2A (CTD(2A)). Studying the effects of acute expression of GluN2A/2B-based chimeric subunits with reciprocal exchanges of their CTDs revealed that CTD(2B) enhances NMDAR toxicity, compared to CTD(2A). Furthermore, the vulnerability of forebrain neurons in vitro and in vivo to NMDAR-dependent Ca(2+) influx is lowered by replacing the CTD of GluN2B with that of GluN2A by targeted exon exchange in a mouse knockin model. Mechanistically, CTD(2B) exhibits stronger physical/functional coupling to the PSD-95-nNOS pathway, which suppresses protective CREB activation. Dependence of NMDAR excitotoxicity on the GluN2 CTD subtype can be overcome by inducing high levels of NMDAR activity. Thus, the identity (2A versus 2B) of the GluN2 CTD controls the toxicity dose-response to episodes of NMDAR activity
    corecore