2,188 research outputs found
Visual Mining of Epidemic Networks
We show how an interactive graph visualization method based on maximal
modularity clustering can be used to explore a large epidemic network. The
visual representation is used to display statistical tests results that expose
the relations between the propagation of HIV in a sexual contact network and
the sexual orientation of the patients.Comment: 8 page
Aircraft/island/ship/satellite intercomparison: Preliminary results from July 16, 1987
The First ISCCP Regional Experiment (FIRE) objective of validating and improving satellite algorithms for inferring cloud properties from satellite radiances was one of the central motivating factors in the design of the specific field experimental strategies used in the July, 1987 marine stratocumulus intensive field observations (IFO). The in situ measuring platforms were deployed to take maximum advantage of redundant measurements (for intercomparison of the in situ sensors) and to provide optimal coverage within satellite images. One of the most ambitious of these strategies was the attempt to coordinate measurements from San Nicolas Island (SNI), the R/V Pt. Sur, the meteorological aircraft, and the satellites. For the most part, this attempt was frustrated by flight restrictions in the vicinity of SNI. The exception was the mission of July 16, 1987, which achieved remarkable success in the coordination of the platforms. This presentation concerns operations conducted by the National Center for Atmospheric Research (NCAR) Electra and how data from the Electra can be integrated with and compared to data from the Pt. Sur, SNI, and the satellites. The focus is on the large-scale, integrated picture of the conditions on July 16 from the perspective of the Electra's flight operations
Casimir Force between a Dielectric Sphere and a Wall: A Model for Amplification of Vacuum Fluctuations
The interaction between a polarizable particle and a reflecting wall is
examined. A macroscopic approach is adopted in which the averaged force is
computed from the Maxwell stress tensor. The particular case of a perfectly
reflecting wall and a sphere with a dielectric function given by the Drude
model is examined in detail. It is found that the force can be expressed as the
sum of a monotonically decaying function of position and of an oscillatory
piece. At large separations, the oscillatory piece is the dominant
contribution, and is much larger than the Casimir-Polder interaction that
arises in the limit that the sphere is a perfect conductor. It is argued that
this enhancement of the force can be interpreted in terms of the frequency
spectrum of vacuum fluctuations. In the limit of a perfectly conducting sphere,
there are cancellations between different parts of the spectrum which no longer
occur as completely in the case of a sphere with frequency dependent
polarizability. Estimates of the magnitude of the oscillatory component of the
force suggest that it may be large enough to be observable.Comment: 18pp, LaTex, 7 figures, uses epsf. Several minor errors corrected,
additional comments added in the final two sections, and references update
Recommended from our members
Goal-directed versus outcome-based financial incentives for weight loss among low-income patients with obesity: rationale and design of the Financial Incentives foR Weight Reduction (FIReWoRk) randomised controlled trial.
IntroductionObesity is a major public health challenge and exacerbates economic disparities through employment discrimination and increased personal health expenditures. Financial incentives for weight management may intensify individuals' utilisation of evidence-based behavioural strategies while addressing obesity-related economic disparities in low-income populations. Trials have focused on testing incentives contingent on achieving weight loss outcomes. However, based on social cognitive and self-determination theories, providing incentives for achieving intermediate behavioural goals may be more sustainable than incentivising outcomes if they enhance an individual's skills and self-efficacy for maintaining long-term weight loss. The objective of this paper is to describe the rationale and design of the Financial Incentives foR Weight Reduction study, a randomised controlled trial to test the comparative effectiveness and cost-effectiveness of two financial incentive strategies for weight loss (goal directed vs outcome based) among low-income adults with obesity, as well as compared with the provision of health behaviour change resources alone.Methods and analysisWe are recruiting 795 adults, aged 18-70 years with a body mass index ≥30 kg/m2, from three primary care clinics serving residents of socioeconomically disadvantaged neighbourhoods in New York City and Los Angeles. All participants receive a 1-year commercial weight loss programme membership, self-monitoring tools (bathroom scale, food journal and Fitbit Alta HR), health education and monthly check-in visits. In addition to these resources, those in the two intervention groups can earn up to $750 over 6 months for: (1) participating in an intensive weight management programme, self-monitoring weight and diet and meeting physical activity guidelines (goal-directed arm); or (2) a ≥1.5% to ≥5% reduction in baseline weight (outcome-based arm). To maximise incentive efficacy, we incorporate concepts from behavioural economics, including immediacy of payments and framing feedback to elicit regret aversion. We will use generalised mixed effect models for repeated measures to examine intervention effects on weight at 6, 9 and 12 months.Ethics and disseminationHuman research protection committees at New York University School of Medicine, University of California Los Angeles (UCLA) David Geffen School of Medicine and Olive-View-UCLA Medical Center granted ethics approval. We will disseminate the results of this research via peer-reviewed publications, conference presentations and meetings with stakeholders.Trial registration numberNCT03157713
Using atomic interference to probe atom-surface interaction
We show that atomic interference in the reflection from two suitably
polarized evanescent waves is sensitive to retardation effects in the
atom-surface interaction for specific experimental parameters. We study the
limit of short and long atomic de Broglie wavelength. The former case is
analyzed in the semiclassical approximation (Landau-Zener model). The latter
represents a quantum regime and is analyzed by solving numerically the
associated coupled Schroedinger equations. We consider a specific experimental
scheme and show the results for rubidium (short wavelength) and the much
lighter meta-stable helium atom (long wavelength). The merits of each case are
then discussed.Comment: 11 pages, including 6 figures, submitted to Phys. Rev. A, RevTeX
sourc
Neurons Responsive to Global Visual Motion Have Unique Tuning Properties in Hummingbirds
Neurons in animal visual systems that respond to
global optic flow exhibit selectivity for motion direction and/or velocity. The avian lentiformis mesencephali (LM), known in mammals as the nucleus of the
optic tract (NOT), is a key nucleus for global motion
processing [1–4]. In all animals tested, it has been
found that the majority of LM and NOT neurons
are tuned to temporo-nasal (back-to-front) motion
[4–11]. Moreover, the monocular gain of the optokinetic response is higher in this direction, compared
to naso-temporal (front-to-back) motion [12, 13].
Hummingbirds are sensitive to small visual perturbations while hovering, and they drift to compensate for
optic flow in all directions [14]. Interestingly, the LM,
but not other visual nuclei, is hypertrophied in hummingbirds relative to other birds [15], which suggests
enhanced perception of global visual motion. Using
extracellular recording techniques, we found that
there is a uniform distribution of preferred directions
in the LM in Anna’s hummingbirds, whereas zebra
finch and pigeon LM populations, as in other tetrapods, show a strong bias toward temporo-nasal motion. Furthermore, LM and NOT neurons are generally
classified as tuned to ‘‘fast’’ or ‘‘slow’’ motion [10, 16,
17], and we predicted that most neurons would be
tuned to slow visual motion as an adaptation for
slow hovering. However, we found the opposite
result: most hummingbird LM neurons are tuned to
fast pattern velocities, compared to zebra finches
and pigeons. Collectively, these results suggest a
role in rapid responses during hovering, as well as
in velocity control and collision avoidance during forward flight of hummingbirds
Who I Am: The Meaning of Early Adolescents’ Most Valued Activities and Relationships, and Implications for Self-Concept Research
Self-concept research in early adolescence typically measures young people’s self-perceptions of competence in specific, adult-defined domains. However, studies have rarely explored young people’s own views of valued self-concept factors and their meanings. For two major self domains, the active and the social self, this mixed-methods study identified factors valued most by 526 young people from socioeconomically diverse backgrounds in Ireland (10-12 years), and explored the meanings associated with these in a stratified subsample (n = 99). Findings indicate that self-concept scales for early adolescence omit active and social self factors and meanings valued by young people, raising questions about content validity of scales in these domains. Findings also suggest scales may under-represent girls’ active and social selves; focus too much on some school-based competencies; and, in omitting intrinsically salient self domains and meanings, may focus more on contingent (extrinsic) rather than true (intrinsic) self-esteem
- …