126 research outputs found
Coronary fractional flow reserve measurements of a stenosed side branch: a computational study investigating the influence of the bifurcation angle
Background Coronary hemodynamics and physiology specific for bifurcation lesions was not well understood. To investigate the influence of the bifurcation angle on the intracoronary hemodynamics of side branch (SB) lesions computational fluid dynamics simulations were performed. Methods A parametric model representing a left anterior descending—first diagonal coronary bifurcation lesion was created according to the literature. Diameters obeyed fractal branching laws. Proximal and distal main branch (DMB) stenoses were both set at 60 %. We varied the distal bifurcation angles (40°, 55°, and 70°), the flow splits to the DMB and SB (55 %:45 %, 65 %:35 %, and 75 %:25 %), and the SB stenoses (40, 60, and 80 %), resulting in 27 simulations. Fractional flow reserve, defined as the ratio between the mean distal stenosis and mean aortic pressure during maximal hyperemia, was calculated for the DMB and SB (FFRSB) for all simulations. Results The largest differences in FFRSB comparing the largest and smallest bifurcation angles were 0.02 (in cases with 40 % SB stenosis, irrespective of the assumed flow split) and 0.05 (in cases with 60 % SB stenosis, flow split 55 %:45 %). When the SB stenosis was 80 %, the difference in FFRSB between the largest and smallest bifurcation angle was 0.33 (flow split 55 %:45 %). By describing the ΔPSB−QSB relationship using a quadratic curve for cases with 80 % SB stenosis, we found that the curve was steeper (i.e. higher flow resistance) when bifurcation angle increases (ΔP = 0.451*Q + 0.010*Q 2 and ΔP = 0.687*Q + 0.017*Q 2 for 40° and 70° bifurcation angle, respectively). Our analyses revealed complex hemodynamics in all cases with evident counter-rotating helical flow structures. Larger bifurcation angles resulted in more pronounced helical flow structures (i.e. higher helicity intensity), when 60 or 80 % SB stenoses were present. A good correlation (R2 = 0.80) between the SB pressure drop and helicity intensity was also found. Conclusions Our analyses showed that, in bifurcation lesions with 60 % MB stenosis and 80 % SB stenosis, SB pressure drop is higher for larger bifurcation angles suggesting higher flow resistance (i.e. curves describing the ΔPSB−QSB relationship being steeper). When the SB stenosis is mild (40 %) or moderate (60 %), SB resistance is minimally influenced by the bifurcation angle, with differences not being clinically meaningful. Our findings also highlighted the complex interplay between anatomy, pressure drops, and blood flow helicity in bifurcations
Utilizing Risk Scores in Determining the Optimal Revascularization Strategy for Complex Coronary Artery Disease
Percutaneous coronary intervention (PCI) of multivessel and/or left main stem disease have been shown to be potentially legitimate revascularization alternatives in appropriately selected patients. Risk stratification is an important component in guiding patients to identify the most appropriate revascularization modality (PCI or coronary artery bypass grafting [CABG]) in conjunction with the Heart Team. The aim of this paper is to give the clinician a concise overview of the important established and evolving contemporary risk models in aiding this decision-making process. Risk models, based on clinical and anatomical variables alone, the novel concept of functional anatomical risk scores, and risk models combining aspects from both clinical and anatomical scores, are all discussed. The emerging concepts of the patient-empowered risk/benefit tradeoff between PCI and CABG to help personalize the choice of revascularization modality are also explored
Design and testing of hydrophobic core/hydrophilic shell nano/micro particles for drug-eluting stent coating
In this study, we designed a novel drug-eluting coating for vascular implants consisting of a core coating of the anti-proliferative drug docetaxel (DTX) and a shell coating of the platelet glycoprotein IIb/IIIa receptor monoclonal antibody SZ-21. The core/shell structure was sprayed onto the surface of 316L stainless steel stents using a coaxial electrospray process with the aim of creating a coating that exhibited a differential release of the two drugs. The prepared stents displayed a uniform coating consisting of nano/micro particles. In vitro drug release experiments were performed, and we demonstrated that a biphasic mathematical model was capable of capturing the data, indicating that the release of the two drugs conformed to a diffusion-controlled release system. We demonstrated that our coating was capable of inhibiting the adhesion and activation of platelets, as well as the proliferation and migration of smooth muscle cells (SMCs), indicating its good biocompatibility and anti-proliferation qualities. In an in vivo porcine coronary artery model, the SZ-21/DTX drug-loaded hydrophobic core/hydrophilic shell particle coating stents were observed to promote re-endothelialization and inhibit neointimal hyperplasia. This core/shell particle-coated stent may serve as part of a new strategy for the differential release of different functional drugs to sequentially target thrombosis and in-stent restenosis during the vascular repair process and ensure rapid re-endothelialization in the field of cardiovascular disease
Treatment with IL-7 Prevents the Decline of Circulating CD4+ T Cells during the Acute Phase of SIV Infection in Rhesus Macaques
Although treatment with interleukin-7 (IL-7) was shown to transiently expand the naïve and memory T-cell pools in patients with chronic HIV-1 infection receiving antiretroviral therapy (ART), it is uncertain whether a full immunologic reconstitution can be achieved. Moreover, the effects of IL-7 have never been evaluated during acute HIV-1 (or SIV) infection, a critical phase of the disease in which the most dramatic depletion of CD4+ T cells is believed to occur. In the present study, recombinant, fully glycosylated simian IL-7 (50 µg/kg, s.c., once weekly for 7 weeks) was administered to 6 rhesus macaques throughout the acute phase of infection with a pathogenic SIV strain (mac251); 6 animals were infected at the same time and served as untreated controls. Treatment with IL-7 did not cause clinically detectable side effects and, despite the absence of concomitant ART, did not induce significant increases in the levels of SIV replication except at the earliest time point tested (day 4 post-infection). Strikingly, animals treated with IL-7 were protected from the dramatic decline of circulating naïve and memory CD4+ T cells that occurred in untreated animals. Treatment with IL-7 induced only transient T-cell proliferation, but it was associated with sustained increase in the expression of the anti-apoptotic protein Bcl-2 on both CD4+ and CD8+ T cells, persistent expansion of all circulating CD8+ T-cell subsets, and development of earlier and stronger SIV Tat-specific T-cell responses. However, the beneficial effects of IL-7 were not sustained after treatment interruption. These data demonstrate that IL-7 administration is effective in protecting the CD4+ T-cell pool during the acute phase of SIV infection in macaques, providing a rationale for the clinical evaluation of this cytokine in patients with acute HIV-1 infection
Transcriptional Profiling in Pathogenic and Non-Pathogenic SIV Infections Reveals Significant Distinctions in Kinetics and Tissue Compartmentalization
Simian immunodeficiency virus (SIV) infection leads to AIDS in experimentally infected macaques, whereas natural reservoir hosts exhibit limited disease and pathology. It is, however, unclear how natural hosts can sustain high viral loads, comparable to those observed in the pathogenic model, without developing severe disease. We performed transcriptional profiling on lymph node, blood, and colon samples from African green monkeys (natural host model) and Asian pigtailed macaques (pathogenic model) to directly compare gene expression patterns during acute pathogenic versus non-pathogenic SIV infection. The majority of gene expression changes that were unique to either model were detected in the lymph nodes at the time of peak viral load. Results suggest a shift toward cellular stress pathways and Th1 profiles during pathogenic infection, with strong and sustained type I and II interferon responses. In contrast, a strong type I interferon response was initially induced during non-pathogenic infection but resolved after peak viral load. The natural host also exhibited controlled Th1 profiles and better preservation of overall cell homeostasis. This study identified gene expression patterns that are specific to disease susceptibility, tissue compartmentalization, and infection duration. These patterns provide a unique view of how host responses differ depending upon lentiviral infection outcome
- …