1,089 research outputs found
Total Chiral Symmetry Breaking during Crystallization: Who needs a "Mother Crystal"?
Processes that can produce states of broken chiral symmetry are of particular
interest to physics, chemistry and biology. Chiral symmetry breaking during
crystallization of sodium chlorate occurs via the production of secondary
crystals of the same handedness from a single "mother crystal" that seeds the
solution. Here we report that a large and "symmetric" population of D- and
L-crystals moves into complete chiral purity disappearing one of the
enantiomers. This result shows: (i) a new symmetry breaking process
incompatible with the hypothesis of a single "mother crystal"; (ii) that
complete symmetry breaking and chiral purity can be achieved from an initial
system with both enantiomers. These findings demand a new explanation to the
process of total symmetry breaking in crystallization without the intervention
of a "mother crystal" and open the debate on this fascinating phenomenon. We
present arguments to show that our experimental data can been explained with a
new model of "complete chiral purity induced by nonlinear autocatalysis and
recycling".Comment: 5 pages, 4 figures, Added reference
Activated O2 dissociation and formation of oxide islands on the Be(0001) surface: Another atomistic model for metal oxidation
By simulating the dissociation of O2 molecules on the Be(0001) surface using
the first-principles molecular dynamics approach, we propose a new atomistic
model for the surface oxidation of sp metals. In our model, only the
dissociation of the first oxygen molecule needs to overcome an energy barrier,
while the subsequent oxygen molecules dissociate barrierlessly around the
adsorption area. Consequently, oxide islands form on the metal surface, and
grow up in a lateral way. We also discover that the firstly dissociated oxygen
atoms are not so mobile on the Be(0001) surface, as on the Al(111) surface. Our
atomistic model enlarges the knowledge on metal surface oxidations by perfectly
explaining the initial stage during the surface oxidation of Be, and might be
applicable to some other sp metal surfaces.Comment: 5 pages, 4 figure
Spin-Orbit Coupling in Iridium-Based 5d Compounds Probed by X-ray Absorption Spectroscopy
We have performed x-ray absorption spectroscopy (XAS) measurements on a
series of Ir-based 5d transition metal compounds, including Ir, IrCl3, IrO2,
Na2IrO3, Sr2IrO4, and Y2Ir2O7. By comparing the intensity of the "white-line"
features observed at the Ir L2 and L3 absorption edges, it is possible to
extract valuable information about the strength of the spin-orbit coupling in
these systems. We observe remarkably large, non-statistical branching ratios in
all Ir compounds studied, with little or no dependence on chemical composition,
crystal structure, or electronic state. This result confirms the presence of
strong spin-orbit coupling effects in novel iridates such as Sr2IrO4, Na2IrO3,
and Y2Ir2O7, and suggests that even simple Ir-based compounds such as IrO2 and
IrCl3 may warrant further study. In contrast, XAS measurements on Re-based 5d
compounds, such as Re, ReO2, ReO3, and Ba2FeReO6, reveal statistical branching
ratios and negligible spin-orbit coupling effects.Comment: 9 pages, 4 figure
Electronic properties of silica nanowires
Thin nanowires of silicon oxide were studied by pseudopotential density
functional electronic structure calculations using the generalized gradient
approximation. Infinite linear and zigzag Si-O chains were investigated. A wire
composed of three-dimensional periodically repeated Si4O8 units was also
optimized, but this structure was found to be of limited stability. The
geometry, electronic structure, and Hirshfeld charges of these silicon oxide
nanowires were computed. The results show that the Si-O chain is metallic,
whereas the zigzag chain and the Si4O8 nanowire are insulators
Transferable Pair Potentials for CdS and ZnS Crystals
A set of interatomic pair potentials is developed for CdS and ZnS crystals.
We show that a simple energy function, which has been used to describe the
properties of CdSe [J. Chem. Phys. 116, 258 (2002)], can be parametrized to
accurately describe the lattice and elastic constants, and phonon dispersion
relations of bulk CdS and ZnS in the wurtzite and rocksalt crystal structures.
The predicted coexistence pressure of the wurtzite and rocksalt structures, as
well as the equation of state are in good agreement with experimental
observations. These new pair potentials enable the study of a wide range of
processes in bulk and nanocrystalline II-VI semiconductor materials
Structure stability in the simple element sodium under pressure
The simple alkali metal Na, that crystallizes in a body-centred cubic
structure at ambient pressure, exhibits a wealth of complex phases at extreme
conditions as found by experimental studies. The analysis of the mechanism of
stabilization of some of these phases, namely, the low-temperature Sm-type
phase and the high-pressure cI16 and oP8 phases, shows that they satisfy the
criteria for the Hume-Rothery mechanism. These phases appear to be stabilized
due to a formation of numerous planes in a Brillouin-Jones zone in the vicinity
of the Fermi sphere of Na, which leads to the reduction of the overall
electronic energy. For the oP8 phase, this mechanism seems to be working if one
assumes that Na becomes divalent metal at this density. The oP8 phase of Na is
analysed in comparison with the MnP-type oP8 phases known in binary compounds,
as well as in relation to the hP4 structure of the NiAs-type
Self-consistency over the charge-density in dynamical mean-field theory: a linear muffin-tin implementation and some physical implications
We present a simple implementation of the dynamical mean-field theory
approach to the electronic structure of strongly correlated materials. This
implementation achieves full self-consistency over the charge density, taking
into account correlation-induced changes to the total charge density and
effective Kohn-Sham Hamiltonian. A linear muffin-tin orbital basis-set is used,
and the charge density is computed from moments of the many body
momentum-distribution matrix. The calculation of the total energy is also
considered, with a proper treatment of high-frequency tails of the Green's
function and self-energy. The method is illustrated on two materials with
well-localized 4f electrons, insulating cerium sesquioxide Ce2O3 and the
gamma-phase of metallic cerium, using the Hubbard-I approximation to the
dynamical mean-field self-energy. The momentum-integrated spectral function and
momentum-resolved dispersion of the Hubbard bands are calculated, as well as
the volume-dependence of the total energy. We show that full self-consistency
over the charge density, taking into account its modification by strong
correlations, can be important for the computation of both thermodynamical and
spectral properties, particularly in the case of the oxide material.Comment: 20 pages, 6 figures (submitted in The Physical Review B
Electronic structure and the glass transition in pnictide and chalcogenide semiconductor alloys. Part I: The formation of the -network
Semiconductor glasses exhibit many unique optical and electronic anomalies.
We have put forth a semi-phenomenological scenario (J. Chem. Phys. 132, 044508
(2010)) in which several of these anomalies arise from deep midgap electronic
states residing on high-strain regions intrinsic to the activated transport
above the glass transition. Here we demonstrate at the molecular level how this
scenario is realized in an important class of semiconductor glasses, namely
chalcogen and pnictogen containing alloys. Both the glass itself and the
intrinsic electronic midgap states emerge as a result of the formation of a
network composed of -bonded atomic -orbitals that are only weakly
hybridized. Despite a large number of weak bonds, these -networks are
stable with respect to competing types of bonding, while exhibiting a high
degree of structural degeneracy. The stability is rationalized with the help of
a hereby proposed structural model, by which -networks are
symmetry-broken and distorted versions of a high symmetry structure. The latter
structure exhibits exact octahedral coordination and is fully
covalently-bonded. The present approach provides a microscopic route to a fully
consistent description of the electronic and structural excitations in vitreous
semiconductors.Comment: 22 pages, 17 figures, revised version, final version to appear in J.
Chem. Phy
Phonon dispersion and electron-phonon coupling in MgB_2 and AlB_2
We present a first principles investigation of the lattice dynamics and
electron-phonon coupling of the superconductor MgB_2 and the isostructural
AlB_2 within the framework of density functional perturbation theory using a
mixed-basis pseudopotential method. Complete phonon dispersion curves and
Eliashberg functions \alpha^2F are calculated for both systems. We also report
on Raman measurements, which support the theoretical findings. The calculated
generalized density-of-states for MgB_2 is in excellent agreement with recent
neutron-scattering experiments. The main differences in the calculated phonon
spectra and \alpha^2F are related to high frequency in-plane boron vibrations.
As compared to AlB_2, they are strongly softened in MgB_2 and exhibit an
exceptionally strong coupling to electronic states at the Fermi energy. The
total coupling constants are \lambda_{MgB_2}=0.73 and \lambda_{AlB_2}=0.43.
Implications for the superconducting transition temperature are briefly
discussed.Comment: 10 pages, 4 figures, to appear in Phys. Rev. Let
- …