1,089 research outputs found

    Total Chiral Symmetry Breaking during Crystallization: Who needs a "Mother Crystal"?

    Get PDF
    Processes that can produce states of broken chiral symmetry are of particular interest to physics, chemistry and biology. Chiral symmetry breaking during crystallization of sodium chlorate occurs via the production of secondary crystals of the same handedness from a single "mother crystal" that seeds the solution. Here we report that a large and "symmetric" population of D- and L-crystals moves into complete chiral purity disappearing one of the enantiomers. This result shows: (i) a new symmetry breaking process incompatible with the hypothesis of a single "mother crystal"; (ii) that complete symmetry breaking and chiral purity can be achieved from an initial system with both enantiomers. These findings demand a new explanation to the process of total symmetry breaking in crystallization without the intervention of a "mother crystal" and open the debate on this fascinating phenomenon. We present arguments to show that our experimental data can been explained with a new model of "complete chiral purity induced by nonlinear autocatalysis and recycling".Comment: 5 pages, 4 figures, Added reference

    Activated O2 dissociation and formation of oxide islands on the Be(0001) surface: Another atomistic model for metal oxidation

    Full text link
    By simulating the dissociation of O2 molecules on the Be(0001) surface using the first-principles molecular dynamics approach, we propose a new atomistic model for the surface oxidation of sp metals. In our model, only the dissociation of the first oxygen molecule needs to overcome an energy barrier, while the subsequent oxygen molecules dissociate barrierlessly around the adsorption area. Consequently, oxide islands form on the metal surface, and grow up in a lateral way. We also discover that the firstly dissociated oxygen atoms are not so mobile on the Be(0001) surface, as on the Al(111) surface. Our atomistic model enlarges the knowledge on metal surface oxidations by perfectly explaining the initial stage during the surface oxidation of Be, and might be applicable to some other sp metal surfaces.Comment: 5 pages, 4 figure

    Spin-Orbit Coupling in Iridium-Based 5d Compounds Probed by X-ray Absorption Spectroscopy

    Full text link
    We have performed x-ray absorption spectroscopy (XAS) measurements on a series of Ir-based 5d transition metal compounds, including Ir, IrCl3, IrO2, Na2IrO3, Sr2IrO4, and Y2Ir2O7. By comparing the intensity of the "white-line" features observed at the Ir L2 and L3 absorption edges, it is possible to extract valuable information about the strength of the spin-orbit coupling in these systems. We observe remarkably large, non-statistical branching ratios in all Ir compounds studied, with little or no dependence on chemical composition, crystal structure, or electronic state. This result confirms the presence of strong spin-orbit coupling effects in novel iridates such as Sr2IrO4, Na2IrO3, and Y2Ir2O7, and suggests that even simple Ir-based compounds such as IrO2 and IrCl3 may warrant further study. In contrast, XAS measurements on Re-based 5d compounds, such as Re, ReO2, ReO3, and Ba2FeReO6, reveal statistical branching ratios and negligible spin-orbit coupling effects.Comment: 9 pages, 4 figure

    Electronic properties of silica nanowires

    Full text link
    Thin nanowires of silicon oxide were studied by pseudopotential density functional electronic structure calculations using the generalized gradient approximation. Infinite linear and zigzag Si-O chains were investigated. A wire composed of three-dimensional periodically repeated Si4O8 units was also optimized, but this structure was found to be of limited stability. The geometry, electronic structure, and Hirshfeld charges of these silicon oxide nanowires were computed. The results show that the Si-O chain is metallic, whereas the zigzag chain and the Si4O8 nanowire are insulators

    Transferable Pair Potentials for CdS and ZnS Crystals

    Full text link
    A set of interatomic pair potentials is developed for CdS and ZnS crystals. We show that a simple energy function, which has been used to describe the properties of CdSe [J. Chem. Phys. 116, 258 (2002)], can be parametrized to accurately describe the lattice and elastic constants, and phonon dispersion relations of bulk CdS and ZnS in the wurtzite and rocksalt crystal structures. The predicted coexistence pressure of the wurtzite and rocksalt structures, as well as the equation of state are in good agreement with experimental observations. These new pair potentials enable the study of a wide range of processes in bulk and nanocrystalline II-VI semiconductor materials

    Structure stability in the simple element sodium under pressure

    Full text link
    The simple alkali metal Na, that crystallizes in a body-centred cubic structure at ambient pressure, exhibits a wealth of complex phases at extreme conditions as found by experimental studies. The analysis of the mechanism of stabilization of some of these phases, namely, the low-temperature Sm-type phase and the high-pressure cI16 and oP8 phases, shows that they satisfy the criteria for the Hume-Rothery mechanism. These phases appear to be stabilized due to a formation of numerous planes in a Brillouin-Jones zone in the vicinity of the Fermi sphere of Na, which leads to the reduction of the overall electronic energy. For the oP8 phase, this mechanism seems to be working if one assumes that Na becomes divalent metal at this density. The oP8 phase of Na is analysed in comparison with the MnP-type oP8 phases known in binary compounds, as well as in relation to the hP4 structure of the NiAs-type

    Self-consistency over the charge-density in dynamical mean-field theory: a linear muffin-tin implementation and some physical implications

    Full text link
    We present a simple implementation of the dynamical mean-field theory approach to the electronic structure of strongly correlated materials. This implementation achieves full self-consistency over the charge density, taking into account correlation-induced changes to the total charge density and effective Kohn-Sham Hamiltonian. A linear muffin-tin orbital basis-set is used, and the charge density is computed from moments of the many body momentum-distribution matrix. The calculation of the total energy is also considered, with a proper treatment of high-frequency tails of the Green's function and self-energy. The method is illustrated on two materials with well-localized 4f electrons, insulating cerium sesquioxide Ce2O3 and the gamma-phase of metallic cerium, using the Hubbard-I approximation to the dynamical mean-field self-energy. The momentum-integrated spectral function and momentum-resolved dispersion of the Hubbard bands are calculated, as well as the volume-dependence of the total energy. We show that full self-consistency over the charge density, taking into account its modification by strong correlations, can be important for the computation of both thermodynamical and spectral properties, particularly in the case of the oxide material.Comment: 20 pages, 6 figures (submitted in The Physical Review B

    Electronic structure and the glass transition in pnictide and chalcogenide semiconductor alloys. Part I: The formation of the ppσpp\sigma-network

    Full text link
    Semiconductor glasses exhibit many unique optical and electronic anomalies. We have put forth a semi-phenomenological scenario (J. Chem. Phys. 132, 044508 (2010)) in which several of these anomalies arise from deep midgap electronic states residing on high-strain regions intrinsic to the activated transport above the glass transition. Here we demonstrate at the molecular level how this scenario is realized in an important class of semiconductor glasses, namely chalcogen and pnictogen containing alloys. Both the glass itself and the intrinsic electronic midgap states emerge as a result of the formation of a network composed of σ\sigma-bonded atomic pp-orbitals that are only weakly hybridized. Despite a large number of weak bonds, these ppσpp\sigma-networks are stable with respect to competing types of bonding, while exhibiting a high degree of structural degeneracy. The stability is rationalized with the help of a hereby proposed structural model, by which ppσpp\sigma-networks are symmetry-broken and distorted versions of a high symmetry structure. The latter structure exhibits exact octahedral coordination and is fully covalently-bonded. The present approach provides a microscopic route to a fully consistent description of the electronic and structural excitations in vitreous semiconductors.Comment: 22 pages, 17 figures, revised version, final version to appear in J. Chem. Phy

    Phonon dispersion and electron-phonon coupling in MgB_2 and AlB_2

    Full text link
    We present a first principles investigation of the lattice dynamics and electron-phonon coupling of the superconductor MgB_2 and the isostructural AlB_2 within the framework of density functional perturbation theory using a mixed-basis pseudopotential method. Complete phonon dispersion curves and Eliashberg functions \alpha^2F are calculated for both systems. We also report on Raman measurements, which support the theoretical findings. The calculated generalized density-of-states for MgB_2 is in excellent agreement with recent neutron-scattering experiments. The main differences in the calculated phonon spectra and \alpha^2F are related to high frequency in-plane boron vibrations. As compared to AlB_2, they are strongly softened in MgB_2 and exhibit an exceptionally strong coupling to electronic states at the Fermi energy. The total coupling constants are \lambda_{MgB_2}=0.73 and \lambda_{AlB_2}=0.43. Implications for the superconducting transition temperature are briefly discussed.Comment: 10 pages, 4 figures, to appear in Phys. Rev. Let
    • …
    corecore