1,612 research outputs found

    Three dimensional optical imaging of blood volume and oxygenation in the neonatal brain

    Get PDF
    Optical methods provide a means of monitoring cerebral oxygenation in newborn infants at risk of brain injury. A 32-channel optical imaging system has been developed with the aim of reconstructing three-dimensional images of regional blood volume and oxygenation. Full image data sets were acquired from 14 out of 24 infants studied; successful images have been reconstructed in 8 of these infants. Regional variations in cerebral blood volume and tissue oxygen saturation are present in healthy preterm infants. In an infant with a large unilateral intraventricular haemorrhage, a corresponding region of low oxygen saturation was detected. These results suggest that optical tomography may provide an appropriate technique for investigating regional cerebral haemodynamics and oxygenation at the cotside. (c) 2006 Elsevier Inc. All rights reserved

    Analysis of BMAA enantiomers in cycads, cyanobacteria, and mammals: in vivo formation and toxicity of D-BMAA

    Get PDF
    We acknowledge support from the John and Josephine Louis Foundation and the Deerbrook Charitable Trust. PBW acknowledges the use of the EPSRC UK National Mass Spectrometry Facility at Swansea University

    Analysis of the Herschel DEBRIS Sun-like star sample

    Get PDF
    This paper presents a study of circumstellar debris around Sun-like stars using data from the Herschel DEBRIS Key Programme. DEBRIS is an unbiased survey comprising the nearest ∼90 stars of each spectral type A-M. Analysis of the 275 F-K stars shows that excess emission from a debris disc was detected around 47 stars, giving a detection rate of 17.1 +2.6−2.3  per cent, with lower rates for later spectral types. For each target a blackbody spectrum was fitted to the dust emission to determine its fractional luminosity and temperature. The derived underlying distribution of fractional luminosity versus blackbody radius in the population showed that most detected discs are concentrated at f ∼ 10−5 and at temperatures corresponding to blackbody radii 7–40 au, which scales to ∼40 au for realistic dust properties (similar to the current Kuiper belt). Two outlying populations are also evident; five stars have exceptionally bright emission ( f > 5 × 10−5), and one has unusually hot dust <4 au. The excess emission distributions at all wavelengths were fitted with a steady-state evolution model, showing that these are compatible with all stars being born with a narrow belt that then undergoes collisional grinding. However, the model cannot explain the hot dust systems – likely originating in transient events – and bright emission systems – arising potentially from atypically massive discs or recent stirring. The emission from the present-day Kuiper belt is predicted to be close to the median of the population, suggesting that half of stars have either depleted their Kuiper belts (similar to the Solar system) or had a lower planetesimal formation efficiency.This work was supported by the European Union through European Research Council grant number 279973 (MCW, GMK). GMK was also supported by the Royal Society as a Royal Society University Research Fellow

    Debris Disks: Probing Planet Formation

    Full text link
    Debris disks are the dust disks found around ~20% of nearby main sequence stars in far-IR surveys. They can be considered as descendants of protoplanetary disks or components of planetary systems, providing valuable information on circumstellar disk evolution and the outcome of planet formation. The debris disk population can be explained by the steady collisional erosion of planetesimal belts; population models constrain where (10-100au) and in what quantity (>1Mearth) planetesimals (>10km in size) typically form in protoplanetary disks. Gas is now seen long into the debris disk phase. Some of this is secondary implying planetesimals have a Solar System comet-like composition, but some systems may retain primordial gas. Ongoing planet formation processes are invoked for some debris disks, such as the continued growth of dwarf planets in an unstirred disk, or the growth of terrestrial planets through giant impacts. Planets imprint structure on debris disks in many ways; images of gaps, clumps, warps, eccentricities and other disk asymmetries, are readily explained by planets at >>5au. Hot dust in the region planets are commonly found (<5au) is seen for a growing number of stars. This dust usually originates in an outer belt (e.g., from exocomets), although an asteroid belt or recent collision is sometimes inferred.Comment: Invited review, accepted for publication in the 'Handbook of Exoplanets', eds. H.J. Deeg and J.A. Belmonte, Springer (2018

    Dusty Planetary Systems

    Full text link
    Extensive photometric stellar surveys show that many main sequence stars show emission at infrared and longer wavelengths that is in excess of the stellar photosphere; this emission is thought to arise from circumstellar dust. The presence of dust disks is confirmed by spatially resolved imaging at infrared to millimeter wavelengths (tracing the dust thermal emission), and at optical to near infrared wavelengths (tracing the dust scattered light). Because the expected lifetime of these dust particles is much shorter than the age of the stars (>10 Myr), it is inferred that this solid material not primordial, i.e. the remaining from the placental cloud of gas and dust where the star was born, but instead is replenished by dust-producing planetesimals. These planetesimals are analogous to the asteroids, comets and Kuiper Belt objects (KBOs) in our Solar system that produce the interplanetary dust that gives rise to the zodiacal light (tracing the inner component of the Solar system debris disk). The presence of these "debris disks" around stars with a wide range of masses, luminosities, and metallicities, with and without binary companions, is evidence that planetesimal formation is a robust process that can take place under a wide range of conditions. This chapter is divided in two parts. Part I discusses how the study of the Solar system debris disk and the study of debris disks around other stars can help us learn about the formation, evolution and diversity of planetary systems by shedding light on the frequency and timing of planetesimal formation, the location and physical properties of the planetesimals, the presence of long-period planets, and the dynamical and collisional evolution of the system. Part II reviews the physical processes that affect dust particles in the gas-free environment of a debris disk and their effect on the dust particle size and spatial distribution.Comment: 68 pages, 25 figures. To be published in "Solar and Planetary Systems" (P. Kalas and L. French, Eds.), Volume 3 of the series "Planets, Stars and Stellar Systems" (T.D. Oswalt, Editor-in-chief), Springer 201

    Kuiper belt structure around nearby super-Earth host stars

    Get PDF
    We present new observations of the Kuiper belt analogues around HD 38858 and HD 20794, hosts of super-Earth mass planets within 1 au. As two of the four nearby G-type stars (with HD 69830 and 61 Vir) that form the basis of a possible correlation between low-mass planets and debris disc brightness, these systems are of particular interest. The disc around HD 38858 is well resolved with Herschel and we constrain the disc geometry and radial structure. We also present a probable James Clerk Maxwell Telescope sub-mm continuum detection of the disc and a CO J = 2–1 upper limit. The disc around HD 20794 is much fainter and appears marginally resolved with Herschel, and is constrained to be less extended than the discs around 61 Vir and HD 38858. We also set limits on the radial location of hot dust recently detected around HD 20794 with near-IR interferometry. We present High Accuracy Radial velocity Planet Searcher upper limits on unseen planets in these four systems, ruling out additional super-Earths within a fewau, and Saturn-mass planets within 10 au. We consider the disc structure in the three systems with Kuiper belt analogues (HD 69830 has only a warm dust detection), concluding that 61 Vir and HD 38858 have greater radial disc extent than HD 20794. We speculate that the greater width is related to the greater minimum planet masses (10–20 M⊕ versus 3–5 M⊕), arising from an eccentric planetesimal population analogous to the Solar system’s scattered disc. We discuss alternative scenarios and possible means to distinguish among them.We thank the referee for a thoughtful review. This work was supported by the European Union through ERC grant number 279973 (GMK, LM, and MCW). LM also acknowledges support by both STFC and ESO through graduate studentships. MM, CL, FP, and SU acknowledge the Swiss National Science Foundation (SNSF) for the continuous support of the RV research programmes.This is the final published version. It first appeared at http://mnras.oxfordjournals.org/content/449/3/3121.abstract

    The sub-energetic GRB 031203 as a cosmic analogue to GRB 980425

    Full text link
    Over the six years since the discovery of the gamma-ray burst GRB 980425, associated with the nearby (distance, ~40 Mpc) supernova 1998bw, astronomers have fiercely debated the nature of this event. Relative to bursts located at cosmological distances, (redshift, z~1), GRB 980425 was under-luminous in gamma-rays by three orders of magnitude. Radio calorimetry showed the explosion was sub-energetic by a factor of 10. Here, we report observations of the radio and X-ray afterglow of the recent z=0.105 GRB 031203 and demonstrate that it too is sub-energetic. Our result, when taken together with the low gamma-ray luminosity, suggest that GRB 031203 is the first cosmic analogue to GRB 980425. We find no evidence that this event was a highly collimated explosion viewed off-axis. Like GRB 980425, GRB 031203 appears to be an intrinsically sub-energetic gamma-ray burst. Such sub-energetic events have faint afterglows. Intensive follow-up of faint bursts with smooth gamma-ray light curves (common to both GRBs 031203 and 980425) may enable us to reveal their expected large population.Comment: To Appear in Nature, August 5, 200

    Simulation of Preterm Neonatal Brain Metabolism During Functional Neuronal Activation Using a Computational Model

    Full text link
    We present a computational model of metabolism in the preterm neonatal brain. The model has the capacity to mimic haemodynamic and metabolic changes during functional activation and simulate functional near-infrared spectroscopy (fNIRS) data. As an initial test of the model's efficacy, we simulate data obtained from published studies investigating functional activity in preterm neonates. In addition we simulated recently collected data from preterm neonates during visual activation. The model is well able to predict the haemodynamic and metabolic changes from these observations. In particular, we found that changes in cerebral blood flow and blood pressure may account for the observed variability of the magnitude and sign of stimulus-evoked haemodynamic changes reported in preterm infants

    Visual representation of National Institute of Allergy and Infectious Disease and Food Allergy and Anaphylaxis Network criteria for anaphylaxis

    Get PDF
    We present a user-friendly visual representation of The National Institute of Allergy and Infectious Disease and the Food Allergy and Anaphylaxis Network criteria so as to enhance recognition of anaphylaxis and active teaching and learning

    Interhemispheric temporal lobe connectivity predicts language impairment in adolescents born preterm.

    Get PDF
    Although language difficulties are common in children born prematurely, robust neuroanatomical correlates of these impairments remain to be established. This study investigated whether the greater prevalence of language problems in preterm (versus term-born) children might reflect injury to major intra- or interhemispheric white matter pathways connecting frontal and temporal language regions. To investigate this, we performed a comprehensive assessment of language and academic abilities in a group of adolescents born prematurely, some of whom had evidence of brain injury at birth (n = 50, mean age: 16 years, mean gestational age: 27 weeks) and compared them to a term-born control group (n = 30). Detailed structural magnetic resonance imaging and diffusion-tractography analyses of intrahemispheric and interhemispheric white matter bundles were performed. Analysis of intrahemispheric pathways included the arcuate fasciculus (dorsal language pathway) and uncinate fasciculus/extreme capsule (ventral language pathway). Analysis of interhemispheric pathways (in particular, connections between the temporal lobes) included the two major commissural bundles: the corpus callosum and anterior commissure. We found language impairment in 38% of adolescents born preterm. Language impairment was not related to abnormalities of the arcuate fasciculus (or its subsegments), but was associated with bilateral volume reductions in the ventral language pathway. However, the most significant volume reduction was detected in the posterior corpus callosum (splenium), which contains interhemispheric connections between the occipital, parietal and temporal lobes. Diffusion tractography showed that of the three groups of interhemispheric fibres within the splenium, only those connecting the temporal lobes were reduced. Crucially, we found that language impairment was only detectable if the anterior commissure (a second temporal lobe commissural pathway) was also small. Regression analyses showed that a combination of anatomical measures of temporal interhemispheric connectivity (through the splenium of the corpus callosum and anterior commissure) explained 57% of the variance in language abilities. This supports recent theories emphasizing the importance of interhemispheric connections for language, particularly in the developing brain
    corecore