67 research outputs found

    Biocatalytic Aromaticity-Breaking Epoxidation of Naphthalene

    Get PDF
    Aromatic hydroxylation reactions catalyzed by heme-thiolate enzymes proceed via an epoxide intermediate. These aromatic epoxides could be valuable building blocks for organic synthesis giving access to a range of chiral transdisubstituted cyclohexadiene synthons. Here we show that naphthalene epoxides generated by fungal peroxygenases can be subjected to nucleophilic ring opening yielding non-racemic trans-disubstituted cyclohexadiene derivates, which in turn can be used for further chemical transformations. Following the ring-opening reactions, the synthetic possibility of cyclohexadiene derivates also demonstrated by four examples yielding functional compounds. This novel approach may represent a promising shortcut for the synthesis of natural products and APIs

    Engineering a Highly Regioselective Fungal Peroxygenase for the Synthesis of Hydroxy Fatty Acids

    Get PDF
    The hydroxylation of fatty acids is an appealing reaction in synthetic chemistry, although the lack of selective catalysts hampers its industrial implementation. In this study, we have engineered a highly regioselective fungal peroxygenase for the ω-1 hydroxylation of fatty acids with quenched stepwise over-oxidation. One single mutation near the Phe catalytic tripod narrowed the heme cavity, promoting a dramatic shift toward subterminal hydroxylation with a drop in the over-oxidation activity. While crystallographic soaking experiments and molecular dynamic simulations shed light on this unique oxidation pattern, the selective biocatalyst was produced by Pichia pastoris at 0.4 g L−1 in a fed-batch bioreactor and used in the preparative synthesis of 1.4 g of (ω-1)-hydroxytetradecanoic acid with 95 % regioselectivity and 83 % ee for the S enantiomer.This work was supported by the European Union Project grant H2020-BBI-PPP-2015-2-720297-ENZOX2; the Spanish projects PID2019-106166RB-100-OXYWAVE, PID2020-118968RB-100-LILI, PID2021-123332OB-C21 and PID2019-107098RJ-I00, funded by the Ministerio de Ciencia e Innovación/Agencia Estatal de Investigación (AEI)/doi: 10.13039/501100011033/; the “Comunidad de Madrid” Synergy CAM project Y2018/BIO-4738-EVOCHIMERA-CM; the Generalitat Valenciana projects CIPROM/2021/079-PROMETEO and SEJI/2020/007; and the PIE-CSIC projects PIE-202040E185 and PIE-201580E042. P.G.d.S. thanks the Ministry of Science, Innovation and Universities (Spain) for her FPI scholarship (BES-2017-080040) and the Ministry of Science and Innovation for her contract as part of the PTQ2020-011037 project funded by MCIN/AEI/10.13039/501100011033 within the NextGenerationEU/PRTR. D.G.-P. thanks Juan de la Cierva Incorporación contract Ref. No.: IJC2020-043725-I, funded by MCIN/AEI/10.13039/501100011033, and the EU NextGenerationEU/PRTR program. K.Ś. thanks to Ministerio de Ciencia e Innovación and Fondo Social Europeo for a Ramón y Cajal contract (Ref. RYC2020-030596-I). We thank the Synchrotron Radiation Source at Alba (Barcelona, Spain) for assistance with the BL13-XALOC beamline

    Human enteric a-defensin 5 promotes shigella infection by enhancing bacterial adhesion and invasion

    Get PDF
    Shigella is a Gram-negative bacterium that causes bacillary dysentery worldwide. It invades the intestinal epithelium to elicit intense inflammation and tissue damage, yet the underlying mechanisms of its host selectivity and low infectious inoculum remain perplexing. Here, we report that Shigella coopts human a-defensin 5 (HD5), a host defense peptide important for intestinal homeostasis and innate immunity, to enhance its adhesion to and invasion of mucosal tissues. HD5 promoted Shigella infection in vitro in a structure-dependent manner. Shigella, commonly devoid of an effective host-adhesion apparatus, preferentially targeted HD5 to augment its ability to colonize the intestinal epithelium through interactions with multiple bacterial membrane proteins. HD5 exacerbated infectivity and Shigella-induced pathology in a culture of human colorectal tissues and three animal models. Our findings illuminate how Shigella exploits innate immunity by turning HD5 into a virulence factor for infection, unveiling a mechanism of action for this highly proficient human pathogen

    Rattusin, an intestinal a-defensin-related peptide in rats with a unique cysteine spacing pattern and salt-insensitive antibacterial activities

    Get PDF
    Cationic antimicrobial peptides are essential components of the innate immune system. As a major family of mammalian antimicrobial peptides, defensins are expressed mainly by mucosal epithelial cells and promyelocytes. Despite the capacity to kill a broad spectrum of bacteria through physical disruption of membranes, most defensins show substantially reduced antibacterial activities in the presence of monovalent and divalent cations, thereby limiting their therapeutic potential, particularly for the treatment of systemic infections. Genome-wide computational screening of the rat genome led to the identification of the gene for a novel a-defensin-related peptide that we termed rattusin. Rattusin shares a highly conserved signal and prosequence with mammalian a-defensins, but instead of the canonical a-defensin six-cysteine motif, rattusin consists of five cysteines with a distinctive spacing pattern. Furthermore, rattusin is preferentially expressed in Paneth cells of the distal small intestine with potent antibacterial activity against a broad range of Gram-negative and Gram-positive bacteria, including antibiotic-resistant strains. The MICs were mostly in the range of 2 to 4 uM, with no appreciable toxicity to mammalian cells at up to 100 uM. In contrast to classical a- and B-defensins, rattusin retained its activity in the presence of physiological concentrations of NaCl and Mg2+, making it an attractive antimicrobial candidate for both topical and systemic applications.Peer reviewedAnimal Scienc

    Environmentally benign solid catalysts for sustainable biodiesel production: A critical review

    No full text
    Versatile bio-derived catalysts have been under dynamic investigation as potential substitutes to conventional chemical catalysts for sustainable biodiesel production. This is because of their unique, low-cost benefits and production processes that are environmentally and economically acceptable. This critical review aspires to present a viable approach to the synthesis of environmentally benign and cost-effective heterogeneous solid-base catalysts from a wide range of biological and industrial waste materials for sustainable biodiesel production. Most of these waste materials include an abundance of metallic minerals like potassium and calcium. The different approaches proposed by researchers to derive highly active catalysts from large-scale waste materials of a re-usable nature are described briefly. Finally, this report extends to present an overview of techno-economic feasibility of biodiesel production, its environmental impacts, commercial aspects of community-based biodiesel production and potential for large-scale expansion.</p

    Surface-from-gradients:An approach based on discrete geometry processing

    No full text
    In this paper, we propose an efficient method to recon-struct surface-from-gradients (SfG). Our method is formu-lated under the framework of discrete geometry processing. Unlike the existing SfG approaches, we transfer the contin-uous reconstruction problem into a discrete space and effi-ciently solve the problem via a sequence of least-square op-timization steps. Our discrete formulation brings three ad-vantages: 1) the reconstruction preserves sharp-features, 2) sparse/incomplete set of gradients can be well handled, and 3) domains of computation can have irregular boundaries. Our formulation is direct and easy to implement, and the comparisons with state-of-the-arts show the effectiveness of our method. 1

    Production of Bio-alkanes from Biomass and CO<sub>2</sub>

    No full text
    Bioelectrochemical technologies such as electro-fermentation and microbial CO2 electrosynthesis are emerging interdisciplinary technologies that can produce renewable fuels and chemicals (such as carboxylic acids). The benefits of electrically driven bioprocesses include improved production rate, selectivity, and carbon conversion efficiency. However, the accumulation of products can lead to inhibition of biocatalysts, necessitating further effort in separating products. The recent discovery of a new photoenzyme, capable of converting carboxylic acids to bio-alkanes, has offered an opportunity for system integration, providing a promising approach for simultaneous product separation and valorisation. Combining the strengths of photo/bio/electrochemical catalysis, we discuss an innovative circular cascading system that converts biomass and CO2 to value-added bio-alkanes (CnH2n+2, n = 2 to 5) whilst achieving carbon circularity.</p

    MiR-98 modulates macrophage polarization and suppresses the effects of tumor-associated macrophages on promoting invasion and epithelial–mesenchymal transition of hepatocellular carcinoma

    No full text
    Abstract Background Tumor-associated macrophages (TAMs) are generally recognized as a promoter of tumor progression. miR-98 has been shown to suppress the proliferation, migration, invasion and epithelial–mesenchymal transition (EMT) of hepatocellular carcinoma (HCC) cells. Here, we aim to investigate the role of miR-98-mediated macrophage polarization in HCC progression. Methods Human blood monocytes were isolated from healthy male donors and incubated with culture medium collected from HepG2 cells for 7 days. The phenotype of the macrophages was detected. The protein expression was detected by Western blot. Levels of cytokines secreted in culture medium were measured using the specific enzyme-linked immunosorbent assay kits. To explore the role of miR-98 in HCC-conditioned TAMs, HCC cells HepG2 and SMMC7721 were cultured with conditioned medium from HCC-conditioned TAMs that had been transfected with miR-98 mimic/inhibitor. Cell proliferation, migration and invasion assays were performed. Results HCC-conditioned TAMs possessed M2-like phenotype, including increased protein expression of CD163 and TNF-αlow, IL-1βlow, TGF-βhigh and IL-10high phenotype. HCC-conditioned TAMs also promoted proliferation, migration, invasion and EMT of HepG2 and SMMC7721 cells. Furthermore, miR-98 modulated macrophage polarization from M2 to M1 in HCC-conditioned TAMs, as evidenced by the alteration of M1- or M2-related cytokines. Moreover, miR-98 mimic significantly suppressed the HCC-conditioned TAMs-mediated promotion of cell migration, invasion and EMT in HepG2 and SMMC7721 cells compared with negative control, whereas miR-98 inhibitor exerted reversed effects. Conclusions miR-98 may play a vital role in regulating macrophage polarization, thereby suppressing the TAMs-mediated promotion of invasion and EMT in HCC

    Peroxygenase-Catalyzed Selective Synthesis of Calcitriol Starting from Alfacalcidol

    No full text
    Calcitriol is an active analog of vitamin D3 and has excellent physiological activities in regulating healthy immune function. To synthesize the calcitriol compound, the concept of total synthesis is often adopted, which typically involves multiple steps and results in an overall low yield. Herein, we envisioned an enzymatic approach for the synthesis of calcitriol. Peroxygenase from Agrocybe aegerita (AaeUPO) was used as a catalyst to hydroxylate the C-H bond at the C-25 position of alfacalcidol and yielded the calcitriol in a single step. The enzymatic reaction yielded 80.3% product formation in excellent selectivity, with a turnover number up to 4000. In a semi-preparative scale synthesis, 72% isolated yield was obtained. It was also found that AaeUPO is capable of hydroxylating the C-H bond at the C-1 position of vitamin D3, thereby enabling the calcitriol synthesis directly from vitamin D3
    corecore