13 research outputs found

    A randomized study evaluating cinacalcet to treat hypercalcemia in renal transplant recipients with persistent hyperparathyroidism

    Get PDF
    Persistent hyperparathyroidism (HPT) after kidney transplantation (KTx) is associated with hypercalcemia, hypophosphatemia and abnormally high levels of parathyroid hormone (PTH). In this randomized trial, cinacalcet was compared to placebo for the treatment of hypercalcemia in adult patients with persistent HPT after KTx. Subjects were randomized 1:1 to cinacalcet or placebo with randomization stratified by baseline corrected total serum calcium levels ( 6411.2 mg/dL [2.80 mmol/L] or >11.2 mg/dL [2.80 mmol/L]). The primary end point was achievement of a mean corrected total serum calcium value <10.2 mg/dL (2.55 mmol/L) during the efficacy period. The two key secondary end points were percent change in bone mineral density (BMD) at the femoral neck and absolute change in phosphorus; 78.9% cinacalcet- versus 3.5% placebo-treated subjects achieved the primary end point with a difference of 75.4% (95% confidence interval [CI]: 63.8, 87.1), p < 0.001. There was no statistical difference in the percent change in BMD at the femoral neck between cinacalcet and placebo groups, p = 0.266. The difference in the change in phosphorus between the two arms was 0.45 mg/dL (95% CI: 0.26, 0.64), p < 0.001 (nominal). No new safety signals were detected. In conclusion, hypercalcemia and hypophosphatemia were effectively corrected after treatment with cinacalcet in patients with persistent HPT after KTx. This randomized, placebo-controlled trial demonstrates that cinacalcet effectively and safely corrects hypercalcemia in adult patients with persistent hyperparathyroidism after successful kidney transplantation. See editorial by Coyne and Delos Santos on page 2446

    Altered glycosylation of IgG4 promotes lectin complement pathway activation in anti-PL A2R1-associated membranous nephropathy

    Get PDF
    Primary membranous nephropathy (pMN) is a leading cause of nephrotic syndrome in adults. In most cases, this autoimmune kidney disease is associated with autoantibodies against the M-type phospholipase A2 receptor (PLA2R1) expressed on kidney podocytes, but the mechanisms leading to glomerular damage remain elusive. Here, we developed a cell culture model using human podocytes and found that anti-PLA2R1-positive pMN patient sera or isolated IgG4, but not IgG4-depleted sera, induced proteolysis of the 2 essential podocyte proteins synaptopodin and NEPH1 in the presence of complement, resulting in perturbations of the podocyte cytoskeleton. Specific blockade of the lectin pathway prevented degradation of synaptopodin and NEPH1. Anti-PLA2R1 IgG4 directly bound mannose-binding lectin in a glycosylation-dependent manner. In a cohort of pMN patients, we identified increased levels of galactose-deficient IgG4, which correlated with anti-PLA2R1 titers and podocyte damage induced by patient sera. Assembly of the terminal C5b-9 complement complex and activation of the complement receptors C3aR1 or C5aR1 were required to induce proteolysis of synaptopodin and NEPH1 by 2 distinct proteolytic pathways mediated by cysteine and aspartic proteinases, respectively. Together, these results demonstrated a mechanism by which aberrantly glycosylated IgG4 activated the lectin pathway and induced podocyte injury in primary membranous nephropathy.Proteomic

    Retrospective analysis of varicella zoster virus (VZV) copy DNA numbers in plasma of immunocompetent patients with herpes zoster, of immunocompromised patients with disseminated VZV disease, and of asymptomatic solid organ transplant recipients

    No full text
    Background: Varicella zoster virus (VZV) causes significant morbidity and mortality in immunocompromised patients. Subclinical reactivation has been described in solid organ recipients and has been associated with graft versus host disease in bone marrow transplantation. Newer studies assessing the prevalence and impact of subclinical VZV reactivation in solid organ transplant (SOT) recipients are lacking. Methods and results: In a first step we developed a highly sensitive quantitative polymerase chain reaction (qPCR) assay for VZV DNA with a detection limit of < or = 20 copies/mL. Using this assay, we retrospectively analyzed plasma samples of different patient groups for VZV DNA. VZV DNA was found in 10/10 plasma samples of immunocompetent patients with herpes zoster (VZV copy numbers/mL: mean+/-SEM 1710+/-1018), in 1/1 sample of a human immunodeficiency virus-infected patient with primary VZV disease (15,192 copies/mL) and in 4/4 plasma samples of immunocompromised patients with visceral VZV disease (mean of first value 214,214+/-178,572). All 108 plasma samples of asymptomatic SOT recipients off any antiviral therapy, randomly sampled over 1 year, were negative for VZV DNA. Conclusion: Our qPCR assay proved to be highly sensitive (100%) in symptomatic VZV disease. We did not detect subclinical reactivation in asymptomatic SOT recipients during the first post-transplant year. Thus, subclinical VZV reactivation is either a rare event or does not exist. These data need to be confirmed in larger prospective trials

    High-resolution solution structure of gurmarin, a sweet-taste-suppressing plant polypeptide

    No full text
    Gurmarin is a 35-residue polypeptide from the Asclepiad vine Gymnema sylvestre. It has been utilised as a pharmacological tool in the study of sweet-taste transduction because of its ability to selectively inhibit the neural response to sweet tastants in rats. We have chemically synthesised and folded gurmarin and determined its three-dimensional solution structure to high resolution using two-dimensional NMR spectroscopy. Structure calculations utilised 612 interproton-distance, 19 dihedral-angle, and 18 hydrogen-bond restraints. The structure is well defined for residues 3–34, with backbone and heavy atom rms differences of 0.27 ± 0.09 Å and 0.73 ± 0.09 Å, respectively. Gurmarin adopts a compact structure containing an antiparallel β-hairpin (residues 22–34), several well-defined β-turns, and a cystine-knot motif commonly observed in toxic and inhibitory polypeptides. Despite striking structural homology with δ-atracotoxin, a spider neurotoxin known to slow the inactivation of voltage-gated Na+ channels, we show that gurmarin has no effect on a variety of voltage-sensitive channels

    Structural Studies of a Peptide with Immune Modulating and Direct Antimicrobial Activity

    Get PDF
    SummaryThe structure and function of the synthetic innate defense regulator peptide 1018 was investigated. This 12 residue synthetic peptide derived by substantial modification of the bovine cathelicidin bactenecin has enhanced innate immune regulatory and moderate direct antibacterial activities. The solution state NMR structure of 1018 in zwitterionic dodecyl phosphocholine (DPC) micelles indicated an α-helical conformation, while secondary structures, based on circular dichroism measurements, in anionic sodium dodecyl sulfate (SDS) and phospholipid vesicles (POPC/PG in a 1:1 molar ratio) and simulations revealed that 1018 can adopt a variety of folds, tailored to its different functions. The structural data are discussed in light of the ability of 1018 to potently induce chemokine responses, suppress the LPS-induced TNF-α response, and directly kill both Gram-positive and Gram-negative bacteria
    corecore