367 research outputs found

    Robust autoresonant excitation in the plasma beat-wave accelerator: a theoretical study

    Full text link
    A modified version of the Plasma Beat-Wave Accelerator scheme is introduced and analyzed, which is based on autoresonant phase-locking of the nonlinear Langmuir wave to the slowly chirped beat frequency of the driving lasers via adiabatic passage through resonance. This new scheme is designed to overcome some of the well-known limitations of previous approaches, namely relativistic detuning and nonlinear modulation or other non-uniformity or non-stationarity in the driven Langmuir wave amplitude, and sensitivity to frequency mismatch due to measurement uncertainties and density fluctuations and inhomogeneities

    Using stochastic acceleration to place experimental limits on the charge of antihydrogen

    Full text link
    Assuming hydrogen is charge neutral, CPT invariance demands that antihydrogen also be charge neutral. Quantum anomaly cancellation also demands that antihydrogen be charge neutral. Standard techniques based on measurements of macroscopic quantities of atoms cannot be used to measure the charge of antihydrogen. In this paper, we describe how the application of randomly oscillating electric fields to a sample of trapped antihydrogen atoms, a form of stochastic acceleration, can be used to place experimental limits on this charge

    Self-consistent Langmuir waves in resonantly driven thermal plasmas

    Get PDF
    The longitudinal dynamics of a resonantly driven Langmuir wave are analyzed in the limit that the growth of the electrostatic wave is slow compared to the bounce frequency. Using simple physical arguments, the nonlinear distribution function is shown to be nearly gaussian in the canonical particle action, with a slowly evolving mean and fixed variance. Self-consistency with the electrostatic potential provide the basic properties of the nonlinear distribution function including a frequency shift that agrees well with driven, electrostatic particle simulations. This extends earlier work on nonlinear Langmuir waves by Morales and O'Neil [G. J. Morales and T. M. O'Neil, Phys. Rev. Lett. 28, 417 (1972)], and could form the basis of a reduced kinetic treatment of Raman backscatter in a plasma.Comment: 11 pages, 4 figures, submitted to Physics of Plasma

    Electron kinetic effects on raman backscatter in plasmas

    Get PDF
    We augment the usual three-wave cold-fluid equations governing Raman backscatter (RBS) with a new kinetic thermal correction, proportional to an average of particle kinetic energy weighted by the ponderomotive phase. From closed-form analysis within a homogeneous kinetic three-wave model and ponderomotively averaged kinetic simulations in a more realistic pulsed case, the magnitude of these new contributions is shown to be a measure of the dynamical detuning between the pump laser, seed laser, and Langmuir wave. Saturation of RBS is analyzed, and the role of trapped particles illuminated. Simple estimates show that a small fraction of trapped particles (similar to 6%) can significantly suppress backscatter. We discuss the best operating regime of the Raman plasma amplifier to reduce these deleterious kinetic effects.open282

    Slowly varying envelope kinetic simulations of pulse amplification by Raman backscattering

    Get PDF
    A numerical code based on an eikonal formalism has been developed to simulate laser-plasma interactions, specifically Raman backscatter(RBS). In this code, the dominant laser modes are described by their wave envelopes, avoiding the need to resolve the laser frequency; appropriately time-averaged equations describe particle motion. The code is fully kinetic, and thus includes critical physics such as particle trapping and Landau damping which are beyond the scope of the commonly used fluid three-wave equations. The dominant forces on the particles are included: the ponderomotive force resulting from the beat wave of the forward and backscattered laser fields and the self-consistent plasma electric field. The code agrees well, in the appropriate regimes, with the results from three-wave equations and particle-in-cell simulations. The effects of plasma temperature on RBS amplification are studied. It is found that increasing the plasma temperature results in modification to particle trapping and the saturation of RBS, even before the onset of Landau damping of the plasma wave. This results in a reduction in the coupling efficiency compared to predictions based on the three-wave equations.open192
    • 

    corecore