21 research outputs found

    Adaptive Multi-Priority Rule Approach To Control Agile Disassembly Systems In Remanufacturing

    Get PDF
    End-of-Life (EOL) products in remanufacturing are prone to a high degree of uncertainty in terms of product quantity and quality. Therefore, the industrial shift towards a circular economy emphasizes the need for agile and hybrid disassembly systems. These systems feature a dynamic material flow. Besides that, they combine the endurance of robots with the dexterity of human operators for an effective and economically reasonable EOL-product treatment. Moreover, being reconfigurable, agile disassembly systems allow an alignment of their functional and quantitative capacity to volatile production programs. However, changes in both the system configuration and the production program to be processed call for adaptive approaches to production control. This paper proposes a multi-priority rule heuristic combined with an optimization tool for adaptive re-parameterization. First, domain-specific priority rules are introduced and incorporated into a weighted priority function for disassembly task allocation. Besides that, a novel metaheuristic parameter optimizer is devised to facilitate the adaption of weights in response to evolving requirements in a reasonable timeframe. Different metaheuristics such as simulated annealing or particle swarm optimization are incorporated as black-box optimizers. Subsequently, the performance of these metaheuristics is meticulously evaluated across six distinct test cases, employing discrete event simulation for evaluation, with a primary focus on measuring both speed and solution quality. To gauge the efficacy of the approach, a robust set of weights is employed as a benchmark. Encouragingly, the results of the experimentation reveal that the metaheuristics exhibit a notable proficiency in rapidly identifying high-quality solutions. The results are promising in that the metaheuristics can quickly find reasonable solutions, thus illustrating the compelling potential in enhancing the efficiency of agile disassembly systems

    Adaptive Multi-Priority Rule Approach To Control Agile Disassembly Systems In Remanufacturing

    Get PDF
    End-of-Life (EOL) products in remanufacturing are prone to a high degree of uncertainty in terms of product quantity and quality. Therefore, the industrial shift towards a circular economy emphasizes the need for agile and hybrid disassembly systems. These systems feature a dynamic material flow. Besides that, they combine the endurance of robots with the dexterity of human operators for an effective and economically reasonable EOL-product treatment. Moreover, being reconfigurable, agile disassembly systems allow an alignment of their functional and quantitative capacity to volatile production programs. However, changes in both the system configuration and the production program to be processed call for adaptive approaches to production control. This paper proposes a multi-priority rule heuristic combined with an optimization tool for adaptive re-parameterization. First, domain-specific priority rules are introduced and incorporated into a weighted priority function for disassembly task allocation. Besides that, a novel metaheuristic parameter optimizer is devised to facilitate the adaption of weights in response to evolving requirements in a reasonable timeframe. Different metaheuristics such as simulated annealing or particle swarm optimization are incorporated as black-box optimizers. Subsequently, the performance of these metaheuristics is meticulously evaluated across six distinct test cases, employing discrete event simulation for evaluation, with a primary focus on measuring both speed and solution quality. To gauge the efficacy of the approach, a robust set of weights is employed as a benchmark. Encouragingly, the results of the experimentation reveal that the metaheuristics exhibit a notable proficiency in rapidly identifying high-quality solutions. The results are promising in that the metaheuristics can quickly find reasonable solutions, thus illustrating the compelling potential in enhancing the efficiency of agile disassembly systems

    Fluid Automation - A Definition and an Application in Remanufacturing Production Systems

    Get PDF
    Production systems must be able to quickly adapt to changing requirements. Especially in the field of remanufacturing, the uncertainty in the state of the incoming products is very high. Several adaptation mechanisms can be applied leading to agile and changeable production systems. Among these, adapting the degree of automation with respect to changeover times and high investment costs is one of the most challenging mechanisms. However, not only long-term changes, but also short-term adaptations can lead to enormous potentials, e.g. when night shifts can be supported by robots and thus higher labor costs and unfavorable working conditions at night can be avoided. These changes in the degree of automation on an operational level are referred to as fluid automation, which will be defined in this paper. The mechanisms of fluid automation are presented together with a case study showing its application on a disassembly station for electrical drives

    Towards planning and control in cognitive factories - A generic model including learning effects and knowledge transfer across system entities

    Get PDF
    Cognitive abilities allow robots to learn and reason from their environment. The gained knowledge can then be incorporated into the robot’s actions which in turn affect the environment. Therefore, a cognitive robot is no longer a static system that performs actions based on a pre-defined set of rules but a complex entity that dynamically adjusts over time. With this, challenges arise for production systems that need to observe and ideally anticipate the cognitive robot’s behavior. Often, digital twins are employed to test and optimize production control systems. This paper presents a generic approach to characterize, model and simulate learning processes and formalized knowledge in hybrid production systems assuming different station types with learning effects. Thereby, quantitative and qualitative learning processes are mapped including knowledge sharing and transfer across entities. A modular and parameterizable design enables the adjustment to different use cases. Eventually, the model is instantiated as a digital twin of a real production system for product disassembly employing cognitive-autonomous robots among human operators and rigidly automated machines. The model shows great potential to be integrated into test beds for planning and control systems of cognitive factories

    Extended Production Planning of Reconfigurable Manufacturing Systems by Means of Simulation-based Optimization

    Get PDF
    Reconfigurable manufacturing systems (RMS) are capable of adjusting their operating point to the requirements of current customer demand with high degrees of freedom. In light of recent events, such as the covid crisis or the chip crisis, this reconfigurability proves to be crucial for efficient manufacturing of goods. Reconfigurability aims thereby not only at adjust production capacities but also for fast integration of new product variants or technologies. However, the operation of such systems is linked to high efforts concerning manual work in production planning and control. Simulation-based optimization provides the possibility to automate processes in production planning and control with the advantage of relying on mostly existing models such as material flow simulations. This paper studies the capabilities of the meta heuristics evolutionary algorithm, linear annealing and tabu search to automate the search for optimal production reconfiguration strategies. Two distinct use cases are regarded: an increase of customer demand and the introduction of a previously unknown product variant. A parametrized material flow simulation is used as function approximator for the optimizers, whereby the production system's structure as well as logic are target variables of the optimizers. The analysis shows that meta-heuristics find good solutions in a short time with only little manual configuration needed. Thus, metaheuristics illustrate the potential to automate the production planning of RMS. However, the results indicate that the performance of the three meta-heuristics considering optimization quality and speed differs strongly

    Foresighted digital twin for situational agent selection in production control

    Get PDF
    As intelligent Data Acquisition and Analysis in Manufacturing nears its apex, a new era of Digital Twins is dawning. Foresighted Digital Twins enable short- to medium-term system behavior predictions to infer optimal production operation strategies. Creating up-to-the-minute Digital Twins requires both the availability of real-time data and its incorporation and serve as a stepping-stone into developing unprecedented forms of production control. Consequently, we regard a new concept of Digital Twins that includes foresight, thereby enabling situational selection of production control agents. One critical element for adequate system predictions is human behavior as it is neither rule-based nor deterministic, which we therefore model applying Reinforcement Learning. Owing to these ever-changing circumstances, rigid operation strategies crucially restrain reactions, as opposed to circumstantial control strategies that hence can outperform traditional approaches. Building on enhanced foresights we show the superiority of this approach and present strategies for improved situational agent selection

    Framework for simulation-based Trajectory Planning and Execution of Robots equipped with a Laser Scanner for Measurement and Inspection

    Get PDF
    Shorter product life cycles require ever faster planning processes for the manufacturing of products. This also applies for measuring processes to ensure compliance with geometric workpiece specifications. In addition, these processes must be designed to be increasingly flexible since mass customization steadily increases product variety. Laser scanning systems mounted on robots offer the possibility of measuring a wide variety of geometries with low measurement uncertainty. In this paper, a method is presented with which measurement trajectories can be planned and virtually validated. We thereby combine and extend existing trajectory planning approaches and explicitly integrate robot kinematics into the planning approach to account for feasibility of the planned trajectories. These can then be directly transferred to the available measurement system. This is enabled by a real time interface directly connecting a virtual environment for measurement simulation and the real measurement system

    Modelling and condition-based control of a flexible and hybrid disassembly system with manual and autonomous workstations using reinforcement learning

    Get PDF
    Remanufacturing includes disassembly and reassembly of used products to save natural resources and reduce emissions. While assembly is widely understood in the field of operations management, disassembly is a rather new problem in production planning and control. The latter faces the challenge of high uncertainty of type, quantity and quality conditions of returned products, leading to high volatility in remanufacturing production systems. Traditionally, disassembly is a manual labor-intensive production step that, thanks to advances in robotics and artificial intelligence, starts to be automated with autonomous workstations. Due to the diverging material flow, the application of production systems with loosely linked stations is particularly suitable and, owing to the risk of condition induced operational failures, the rise of hybrid disassembly systems that combine manual and autonomous workstations can be expected. In contrast to traditional workstations, autonomous workstations can expand their capabilities but suffer from unknown failure rates. For such adverse conditions a condition-based control for hybrid disassembly systems, based on reinforcement learning, alongside a comprehensive modeling approach is presented in this work. The method is applied to a real-world production system. By comparison with a heuristic control approach, the potential of the RL approach can be proven simulatively using two different test cases
    corecore