12 research outputs found

    The EuroSTARRS-2001 aircraft campaign of the European Space Agency in support of the SMOS Mission

    Get PDF
    Ponencia presentada en: III Congreso de la Asociación Española de Climatología “El agua y el clima”, celebrado en Palma de Mallorca del 16 al 19 de junio de 2002.This work was carried out in the framework of the ESA-ESTEC contract no: 15949/02/NL/SF, and the Spanish National Space Research Programme Project no: PNE-009/2001-C-03

    PolInSAR Signatures of Alpine Snow

    Get PDF
    Snow cover appears as a key indicator in climate change, and the ability to remotely measure the physical properties of snow is of vital importance. Current model-based approaches used to interpret satellite and airborne data need much stronger experimental confirmation. PolInSAR is a promising emerging technique for the measurement of snow depth. It exploits the polarisation dependence of scattering mechanisms to estimate scattering phase centre heights, which can be extrapolated to retrieve snow depth. Both modelling work and previous experimental campaigns indicate that the X and Ku-bands are particularly suited for retrieving the physical properties of a snow pack as they are sensitive to both the surface and volume characteristics. However, no comprehensive assessment of the operational potential and limitations of PolInSAR are yet available for snow. This work investigates the conditions under which PolInSAR produces accurate results with respect to snow parameters such as structural features and metamorphic state, as well as technical sensor specifications. A field study of the PolInSAR X- and Ku-band response of alpine snow was carried out with the UK’s Ground-Based SAR (GBSAR) system in a measurement campaign in the Austrian Alps during early 2007. Complementary detailed snow state and structural parameters were also recorded, as well as environmental meteorological data. A brief outline of the experimental technique is presented, and an example of an interferometric product

    The WISE 2000 campaign: sea surface salinity and wind retrievals from L-band radiometry

    No full text
    Sea surface salinity (SSS) has been recognized as a key parameter in climatological studies. SSS can be measured by passive microwave remote sensing at L band, where the sensitivity of the brightness temperatures shows a maximum and the atmosphere is almost transparent. To provide global coverage of this basic parameter with a 3-day revisit time, the SMOS mission was recently selected by ESA within the frame of the Earth Explorer Opportunity Missions. The SMOS mission will carry the MIRAS instrument, the first 2D L-band aperture synthesis interferometric radiometer. To address new challenges that this mission presents, such as incidence angle variation with pixel, polarization mixing, effect of wind and foam and others, a measurement campaign has been sponsored by ESA under the name of WISE 2000 and it is scheduled for October-November 2000. Two L-band radiometers, a video, a IR and a stereo-camera and four oceanographic and meteorological buoys will be installed in the oil platform 'Casablanca' located at 40 Km off the coast of Tarragona, where the sea conditions are representative of the Mediterranean open sea with periodic influence of the Ebro river fresh water plume.Peer ReviewedPostprint (published version

    The EuroSTARRS campaign in support of the Soil Moisture and Ocean Salinity mission

    No full text
    International audienceThe US Salinity Temperature and Roughness Remote Scanner (STARRS) was exploited during an European campaign in 2001 (EuroSTARRS) supporting the scientific preparation of the Soil Moisture and Ocean Salinity (SMOS) mission. This paper is intended to introduce the EuroSTARRS experiment set-up and to provide an overview of all activities performed during this campaign

    Validation of GOMOS-Envisat vertical profiles of O<sub>3</sub>, NO<sub>2</sub>, NO<sub>3</sub>, and aerosol extinction using balloon-borne instruments and analysis of the retrievals

    Get PDF
    The UV-visible Global Ozone Monitoring by Occultation of Stars (GOMOS) instrument onboard Envisat performs nighttime measurements of ozone, NO2, NO3 and of the aerosol extinction, using the stellar occultation method. We have conducted a validation exercise using various balloon-borne instruments in different geophysical conditions from 2002 to 2006, using GOMOS measurements performed with stars of different magnitudes. GOMOS and balloon-borne vertical columns in the middle stratosphere are in excellent agreement for ozone and NO2. Some discrepancies can appear between GOMOS and balloon-borne vertical profiles for the altitude and the amplitude of the concentration maximum. These discrepancies are randomly distributed, and no bias is detected. The accuracy of individual profiles in the middle stratosphere is 10 % for ozone and 25 % for NO2. On the other hand, the GOMOS NO3 retrieval is difficult and no direct validation can be conducted. The GOMOS aerosol content is also well estimated, but the wavelength dependence can be better estimated if the aerosol retrieval is performed only in the visible domain. We can conclude that the GOMOS operational retrieval algorithm works well and that GOMOS has fully respected its primary objective for the study of the trends of species in the middle stratosphere, using the profiles in a statistical manner. Some individual profiles can be partly inaccurate, in particular in the lower stratosphere. Improvements could be obtained by reprocessing some GOMOS transmissions in case of specific studies in the middle and lower stratosphere when using the individual profiles

    Sea surface emissivity at L-band: results of the WInd and Salinity Experiments WISE 2000 and 2001 and Preliminary resuñts from FROG 2003.

    No full text
    Two field experiments named WISE (WInd and Salinity Experiment) were sponsored by the European Space Agency (ESA) to better understand the wind and sea state effects on the L-band brightness temperatures. They took place at the Casablanca oil rig located in the North Mediterranean Sea, 40 km off shore the Ebro river delta: WISE 2000 from November 25 to December 18, 2000, and continued during the January 9 to 16, 2001, and WISE 2001 from October 23 to November 22, 2001. During the spring of 2003, under Spanish National funds, a third field experiment named FROG (Foam, Rain, Oil slicks and GPS reflectometry) took place at the Ebro river delta, to measure the phenomena that were not completely understood during the WISE field experiments, mainly the effect of foam and rain. In order to achieve the objectives of the WISE field experiments the LAURA L-band fully polarimetric radiometer from the Technical University of Catalonia (UPC) was mounted on the Casablanca oil-rig at the 32 meters deck above the sea surface, pointing to the North and North-West, in the direction of the dominant winds. In this paper we present the results of the first study to determine the relationship between the brightness temperature and the sea state

    The WISE 2000 and 2001 Field Experiments in Support of the SMOS Mission:Sea Surface L-Band Brightness Temperature Observations and Their Application to Sea Surface Salinity Retrieval.

    Get PDF
    Soil Moisture and Ocean Salinity (SMOS) is an Earth Explorer Opportunity Mission from the European Space Agency with a launch date in 2007. Its goal is to produce global maps of soil moisture and ocean salinity variables for climatic studies using a new dual-polarization L-band (1400-1427 MHz) radiometer Microwave Imaging Radiometer by Aperture Synthesis (MIRAS). SMOS will have multiangular observation capability and can be optionally operated in full-polarimetric mode. At this frequency the sensitivity of the brightness temperature (T/sub B/) to the sea surface salinity (SSS) is low: 0.5 K/psu for a sea surface temperature (SST) of 20/spl deg/C, decreasing to 0.25 K/psu for a SST of 0/spl deg/C. Since other variables than SSS influence the T/sub B/ signal (sea surface temperature, surface roughness and foam), the accuracy of the SSS measurement will degrade unless these effects are properly accounted for. The main objective of the ESA-sponsored Wind and Salinity Experiment (WISE) field experiments has been the improvement of our understanding of the sea state effects on T/sub B/ at different incidence angles and polarizations. This understanding will help to develop and improve sea surface emissivity models to be used in the SMOS SSS retrieval algorithms. This paper summarizes the main results of the WISE field experiments on sea surface emissivity at L-band and its application to a performance study of multiangular sea surface salinity retrieval algorithms. The processing of the data reveals a sensitivity of T/sub B/ to wind speed extrapolated at nadir of /spl sim/0.23-0.25 K/(m/s), increasing at horizontal (H) polarization up to /spl sim/0.5 K/(m/s), and decreasing at vertical (V) polarization down to /spl sim/-0.2 K/(m/s) at 65/spl deg/ incidence angle. The sensitivity of T/sub B/ to significant wave height extrapolated to nadir is /spl sim/1 K/m, increasing at H-polarization up to /spl sim/1.5 K/m, and decreasing at V-polarization down to -0.5 K/m at 65/spl deg/. A modulation of the instantaneous brightness temperature T/sub B/(t) is found to be correlated with the measured sea surface slope spectra. Peaks in T/sub B/(t) are due to foam, which has allowed estimates of the foam brightness temperature and, taking into account the fractional foam coverage, the foam impact on the sea surface brightness temperature. It is suspected that a small azimuthal modulation /spl sim/0.2-0.3 K exists for low to moderate wind speeds. However, much larger values (4-5 K peak-to-peak) were registered during a strong storm, which could be due to increased foam. These sensitivities are satisfactorily compared to numerical models, and multiangular T/sub B/ data have been successfully used to retrieve sea surface salinity
    corecore