26 research outputs found

    The plasma level changes of VEGF and soluble VEGF receptor-1 are associated with high-altitude pulmonary edema

    Get PDF
    Hypoxia-induced plasma levels of VEGF and sFlt-1 are responsible for increased vascular permeability occurred in both brain and pulmonary edema. Currently, it remains unclear the exact roles of VEGF and sFlt-1 in High Altitude Pulmonary Edema (HAPE) pathogenesis. In this study, plasma levels of VEGF and sFlt-1 from 10 HAPE and 10 non-HAPE subjects were measured and compared. The results showed that plasma levels of both VEGF and sFlt-1 in HAPE patients were significantly increased as compared to the non-HAPE group. Interestingly, increased plasma levels of these two protein factors were markedly reduced after treatments. As compared to VEGF, sFlt-1 was much more affected by hypoxia and treatments, suggesting this factor was a key factor contributed to HAPE pathogenesis. Importantly, the ratio of sFlt-1 and VEGF in group of either non-HAPE or HAPE after recovery was significantly lower than the ratio in HAPE patients prior to treatments. Our findings suggested that sFlt-1 was a key factor that involved in HAPE pathogenesis and the sFlt-1/VEGF ratio could be used as a sensitive diagnostic marker for HAPE

    Platelet reduction under hypoxia<b> </b>associated with GPIbα-vWF

    No full text
    Changes of platelet parameters in rats under chronic hypoxia;The changes of megakaryocyte number in bone marrow and lung tissue sections; The change of reticulated platelet proportion and platelet apoptosis; Effects of different oxygen concentrations on the maturation and differentiation of megakaryocytes. Effect of changing the interaction of glycoprotein Ib alpha-von Willebrand factor on platelet apoptosis and number.</p

    Table1_Alteration in the number, morphology, function, and metabolism of erythrocytes in high-altitude polycythemia.DOCX

    No full text
    Introduction: High-altitude polycythemia (HAPC) is a common chronic high-altitude disease characterized by significantly increased erythrocyte, hemoglobin (Hb), and hematocrit values and decreased arterial oxygen saturation. The mechanisms underlying HAPC development are unclear; we aimed to investigate this in an HAPC rat model.Methods: Twelve Sprague–Dawley rats were divided into control and HAPC groups. The HAPC group was exposed to hypobaric hypoxia. This HAPC model was assessed using routine blood tests and blood gas analyses. Bone marrow, peripheral blood reticulocytes (RETs), and peripheral blood erythrocyte apoptosis were measured using flow cytometry. Erythrocyte osmotic fragility (EOF) tests were conducted. Abnormal erythrocytes were counted using electron microscopy. Plasma-free hemoglobin, 5′-nucleotidase (CD73), adenosine, erythrocyte cytosolic adenosine, sphingosine-1-phosphate (S1P), and 2,3-bisphosphoglycerate (BPG) levels were measured using enzyme-linked immunosorbent assays. Erythrocyte metabolic pathway-related protein [adenosine A2B receptor (ADORA2B), erythrocyte equilibrative nucleoside transporter 1 (eENT1), sphingosine kinase 1 (SPHK1), phospho-SPHK1, bisphosphoglycerate mutase (BPGM), and glyceraldehyde 3-phosphate dehydrogenase (GAPDH)] levels were assessed by Western blotting.Results: The HAPC rat model was successfully established (Hb > 210 g/L). Indices of bone marrow and peripheral blood RET proportions were significantly higher in the HAPC than the control group (p = 0.04 and p Conclusion: In model rats, an HAPC-related erythrocyte increase was associated with enhanced bone marrow hematopoietic function and reduced erythrocyte apoptosis, whereas numerous abnormal erythrocytes, increased EOF, and reduced hemolysis resistance were associated with erythrocyte metabolism. CD73/adenosine/S1P/2,3-BPG and eENT1/adenosine/BPGM/2,3-BPG metabolic pathways in erythrocytes were activated in HAPC rats, facilitating oxygen release. These findings further reveal the intrinsic HAPC mechanism and forms a basis for future development of preventive and therapeutic strategies for HAPC.</p

    Image1_Alteration in the number, morphology, function, and metabolism of erythrocytes in high-altitude polycythemia.TIF

    No full text
    Introduction: High-altitude polycythemia (HAPC) is a common chronic high-altitude disease characterized by significantly increased erythrocyte, hemoglobin (Hb), and hematocrit values and decreased arterial oxygen saturation. The mechanisms underlying HAPC development are unclear; we aimed to investigate this in an HAPC rat model.Methods: Twelve Sprague–Dawley rats were divided into control and HAPC groups. The HAPC group was exposed to hypobaric hypoxia. This HAPC model was assessed using routine blood tests and blood gas analyses. Bone marrow, peripheral blood reticulocytes (RETs), and peripheral blood erythrocyte apoptosis were measured using flow cytometry. Erythrocyte osmotic fragility (EOF) tests were conducted. Abnormal erythrocytes were counted using electron microscopy. Plasma-free hemoglobin, 5′-nucleotidase (CD73), adenosine, erythrocyte cytosolic adenosine, sphingosine-1-phosphate (S1P), and 2,3-bisphosphoglycerate (BPG) levels were measured using enzyme-linked immunosorbent assays. Erythrocyte metabolic pathway-related protein [adenosine A2B receptor (ADORA2B), erythrocyte equilibrative nucleoside transporter 1 (eENT1), sphingosine kinase 1 (SPHK1), phospho-SPHK1, bisphosphoglycerate mutase (BPGM), and glyceraldehyde 3-phosphate dehydrogenase (GAPDH)] levels were assessed by Western blotting.Results: The HAPC rat model was successfully established (Hb > 210 g/L). Indices of bone marrow and peripheral blood RET proportions were significantly higher in the HAPC than the control group (p = 0.04 and p Conclusion: In model rats, an HAPC-related erythrocyte increase was associated with enhanced bone marrow hematopoietic function and reduced erythrocyte apoptosis, whereas numerous abnormal erythrocytes, increased EOF, and reduced hemolysis resistance were associated with erythrocyte metabolism. CD73/adenosine/S1P/2,3-BPG and eENT1/adenosine/BPGM/2,3-BPG metabolic pathways in erythrocytes were activated in HAPC rats, facilitating oxygen release. These findings further reveal the intrinsic HAPC mechanism and forms a basis for future development of preventive and therapeutic strategies for HAPC.</p

    Table2_Alteration in the number, morphology, function, and metabolism of erythrocytes in high-altitude polycythemia.DOCX

    No full text
    Introduction: High-altitude polycythemia (HAPC) is a common chronic high-altitude disease characterized by significantly increased erythrocyte, hemoglobin (Hb), and hematocrit values and decreased arterial oxygen saturation. The mechanisms underlying HAPC development are unclear; we aimed to investigate this in an HAPC rat model.Methods: Twelve Sprague–Dawley rats were divided into control and HAPC groups. The HAPC group was exposed to hypobaric hypoxia. This HAPC model was assessed using routine blood tests and blood gas analyses. Bone marrow, peripheral blood reticulocytes (RETs), and peripheral blood erythrocyte apoptosis were measured using flow cytometry. Erythrocyte osmotic fragility (EOF) tests were conducted. Abnormal erythrocytes were counted using electron microscopy. Plasma-free hemoglobin, 5′-nucleotidase (CD73), adenosine, erythrocyte cytosolic adenosine, sphingosine-1-phosphate (S1P), and 2,3-bisphosphoglycerate (BPG) levels were measured using enzyme-linked immunosorbent assays. Erythrocyte metabolic pathway-related protein [adenosine A2B receptor (ADORA2B), erythrocyte equilibrative nucleoside transporter 1 (eENT1), sphingosine kinase 1 (SPHK1), phospho-SPHK1, bisphosphoglycerate mutase (BPGM), and glyceraldehyde 3-phosphate dehydrogenase (GAPDH)] levels were assessed by Western blotting.Results: The HAPC rat model was successfully established (Hb > 210 g/L). Indices of bone marrow and peripheral blood RET proportions were significantly higher in the HAPC than the control group (p = 0.04 and p Conclusion: In model rats, an HAPC-related erythrocyte increase was associated with enhanced bone marrow hematopoietic function and reduced erythrocyte apoptosis, whereas numerous abnormal erythrocytes, increased EOF, and reduced hemolysis resistance were associated with erythrocyte metabolism. CD73/adenosine/S1P/2,3-BPG and eENT1/adenosine/BPGM/2,3-BPG metabolic pathways in erythrocytes were activated in HAPC rats, facilitating oxygen release. These findings further reveal the intrinsic HAPC mechanism and forms a basis for future development of preventive and therapeutic strategies for HAPC.</p

    The expression of CTLA-4 in hepatic alveolar echinococcosis patients and blocking CTLA-4 to reverse T cell exhaustion in Echinococcus multilocularis-infected mice

    No full text
    Alveolar echinococcosis (AE) is a zoonotic parasitic disease caused by the infection of Echinococcus multilocularis (E. multilocularis) larvae. Cytotoxic T-lymphocyte antigen 4 (CTLA-4) produces inhibitory signals and induces T cell exhaustion, thereby inhibiting the parasiticidal efficacy of the liver immune system. Therefore, the purpose of this study is to explore how T-cell exhaustion contributes to AE and whether blocking CTLA-4 could reverse T cell exhaustion. Here we discovered that the expression of CTLA-4 was increased in the infiltrating margin around the lesion of the liver from AE patients by using western blot and immunohistochemistry assay. Multiple fluorescence immunohistochemistry identified that CTLA-4 and CD4/CD8 molecules were co-localized. For in vitro experiments, it was found that the sustained stimulation of E. multilocularis antigen could induce T cell exhaustion, blocking CTLA-4-reversed T cell exhaustion. For in vivo experiments, the expression of CTLA-4 was increased in the liver of E. multilocularis-infected mice, and the CTLA-4 and CD4/CD8 molecules were co-localized. Flow cytometry analysis demonstrated that the percentages of both CD4+ T cells and CD8+ T cells in the liver and peripheral blood were significantly increased and induced T exhaustion. When the mice were treated with anti-CTLA-4 antibodies, the number and weight of the lesions decreased significantly. Meanwhile, the flow cytometry results suggested that blocking CTLA-4 could effectively reverse T cell exhaustion and reactivate immune function. Our work reveals that blocking CTLA-4 could effectively reverse the T cell exhaustion caused by E. multilocularis and could be used as a novel target for the treatment of AE

    The human platelet transcriptome and proteome is altered and pro-thrombotic functional responses are increased during prolonged hypoxia exposure at high altitude

    No full text
    Exposure to hypoxia, through ascension to high altitudes (HAs), air travel, or human disease, is associated with an increased incidence of thrombosis in some settings. Mechanisms underpinning this increased thrombosis risk remain incompletely understood, and the effects of more sustained hypoxia on the human platelet molecular signature and associated functional responses have never been examined. We examined the effects of prolonged (≥2 months continuously) hypobaric hypoxia on platelets isolated from subjects residing at HA (3,700 meters) and, for comparison, matched subjects residing under normoxia conditions at sea level (50 meters). Using complementary transcriptomic, proteomic, and functional methods, we identified that the human platelet transcriptome is markedly altered under prolonged exposure to hypobaric hypoxia at HA. Among the significantly, differentially expressed genes (mRNA and protein), were those having canonical roles in platelet activation and thrombosis, including membrane glycoproteins (e.g. GP4, GP6, GP9), integrin subunits (e.g. ITGA2B), and alpha-granule chemokines (e.g. SELP, PF4V1). Platelets from subjects residing at HA were hyperactive, as demonstrated by increased engagement and adhesion to fibrinogen, fewer alpha granules by transmission electron microscopy, increased circulating PF4 and ADP, and significantly enhanced clot retraction. In conclusion, we identify that prolonged hypobaric hypoxia exposure due to HA alters the platelet transcriptome and proteome, triggering increased functional activation responses that may contribute to thrombosis. Our findings may also have relevance across a range of human diseases where chronic hypoxia, platelet activation, and thrombosis are increased

    Apoptosis is one cause of thrombocytopenia in patients with high-altitude polycythemia

    No full text
    High-altitude polycythemia (HAPC) can occur in individuals who are intolerant to high-altitude hypoxia. In patients with HAPC, erythrocytosis is often accompanied by a decrease in platelet count. Chronic hypoxia can increase the incidence of arteriovenous thrombosis and the risk of bleeding during antithrombotic treatment due to thrombocytopenia; therefore, understanding the cause of thrombocytopenia can reduce the risk of treatment-related bleeding. In this study, we examined platelet production and apoptosis to understand the cause of thrombocytopenia in patients with HAPC. The classification of myeloid-derived megakaryocytes (MKs) in HAPC patients was mainly granular MKs rather than mature MKs, suggesting impaired differentiation and maturation. However, the total number of MKs and newly generated reticulated platelets in the peripheral blood increased, indicating sufficient platelet generation in HAPC thrombocytopenia. Increased platelet apoptosis may be one of the causes of thrombocytopenia. Platelet activation and GP1bα pathway activation induced by thrombin and von Willebrand factor can lead to platelet apoptosis. Platelet production was not reduced in patients with HAPC, whereas platelet apoptosis was associated with thrombocytopenia. These findings provide a rationale for considering the bleeding risk in HAPC patient while treating thrombotic diseases. What is the context? Platelets are essential in the process of blood clotting; hence, low platelet count increases the risk of bleeding. Thrombocytopenia is present in patients with high-altitude polycythemia Hypoxia can lead to platelet activation and increase in procoagulant factors, while at the same time increase the risk of thrombosis due to erythrocytosis and blood stasis. Antithrombotic therapy should be administered when thrombosis occurs in patients with high altitude polycythemia; however, due to the low platelet count, risk of bleeding must be considered. What is new? In this study, we found that platelet production was not decreased in patients with high-altitude polycythemia. One cause of thrombocytopenia is apoptosis, which is associated with platelet activation, especially GP1bα activation. Inhibition of GP1bα binding to ligand decreased the level of platelet apoptosis. What is the impact? This study provides novel insights into antithrombotic therapy for patients with high-altitude polycythemia complicated by thrombosis. Thrombocytopenia is associated with excessive apoptosis. Interfering with GP1bα targets may have a dual benefit, both in inhibiting thrombosis and avoiding thrombocytopenia.</p

    Shared and Unique Signals of High-Altitude Adaptation in Geographically Distinct Tibetan Populations

    No full text
    <div><p>Recent studies have used a variety of analytical methods to identify genes targeted by selection in high-altitude populations located throughout the Tibetan Plateau. Despite differences in analytic strategies and sample location, hypoxia-related genes, including <i>EPAS1</i> and <i>EGLN1</i>, were identified in multiple studies. By applying the same analytic methods to genome-wide SNP information used in our previous study of a Tibetan population (n = 31) from the township of Maduo, located in the northeastern corner of the Qinghai-Tibetan Plateau (4200 m), we have identified common targets of natural selection in a second geographically and linguistically distinct Tibetan population (n = 46) in the Tuo Tuo River township (4500 m). Our analyses provide evidence for natural selection based on iHS and XP-EHH signals in both populations at the p<0.02 significance level for <i>EPAS1</i>, <i>EGLN1</i>, <i>HMOX2</i>, and <i>CYP17A1</i> and for <i>PKLR</i>, <i>HFE</i>, and <i>HBB</i> and <i>HBG2</i>, which have also been reported in other studies. We highlight differences (i.e., stratification and admixture) in the two distinct Tibetan groups examined here and report selection candidate genes common to both groups. These findings should be considered in the prioritization of selection candidate genes in future genetic studies in Tibet.</p></div
    corecore