1,523 research outputs found

    Lithographically and electrically controlled strain effects on anisotropic magnetoresistance in (Ga,Mn)As

    Full text link
    It has been demonstrated that magnetocrystalline anisotropies in (Ga,Mn)As are sensitive to lattice strains as small as 10^-4 and that strain can be controlled by lattice parameter engineering during growth, through post growth lithography, and electrically by bonding the (Ga,Mn)As sample to a piezoelectric transducer. In this work we show that analogous effects are observed in crystalline components of the anisotropic magnetoresistance (AMR). Lithographically or electrically induced strain variations can produce crystalline AMR components which are larger than the crystalline AMR and a significant fraction of the total AMR of the unprocessed (Ga,Mn)As material. In these experiments we also observe new higher order terms in the phenomenological AMR expressions and find that strain variation effects can play important role in the micromagnetic and magnetotransport characteristics of (Ga,Mn)As lateral nanoconstrictions.Comment: 11 pages, 4 figures, references fixe

    Voltage control of magnetocrystalline anisotropy in ferromagnetic - semiconductor/piezoelectric hybrid structures

    Full text link
    We demonstrate dynamic voltage control of the magnetic anisotropy of a (Ga,Mn)As device bonded to a piezoelectric transducer. The application of a uniaxial strain leads to a large reorientation of the magnetic easy axis which is detected by measuring longitudinal and transverse anisotropic magnetoresistance coefficients. Calculations based on the mean-field kinetic-exchange model of (Ga,Mn)As provide microscopic understanding of the measured effect. Electrically induced magnetization switching and detection of unconventional crystalline components of the anisotropic magnetoresistance are presented, illustrating the generic utility of the piezo voltage control to provide new device functionalities and in the research of micromagnetic and magnetotransport phenomena in diluted magnetic semiconductors.Comment: Submitted to Physical Review Letters. Updates version 1 to include a more detailed discussion of the effect of strain on the anisotropic magnetoresistanc

    Franck-Condon Physics in A Single Trapped Ion

    Full text link
    We propose how to explore the Franck-Condon (FC) physics via a single ion confined in a spin-dependent potential, formed by the combination of a Paul trap and a magnetic field gradient. The correlation between electronic and vibrational degrees of freedom, called as electron-vibron coupling, is induced by a nonzero gradient. For a sufficiently strong electron-vibron coupling, the FC blockade of low-lying vibronic transitions takes place. We analyze the feasibility of observing the FC physics in a single trapped ion, and demonstrate various potential applications of the ionic FC physics in quantum state engineering and quantum information processing.Comment: 7 pages, 5 figure

    The hot and cold interstellar matter of early type galaxies and their radio emission

    Get PDF
    Over the last few years, the knowledge of the interstellar matter (ISM) of early type galaxies has increased dramatically. Many early type galaxies are now known to have ISM in three different phases: cold (neutral hydrogen (HI), dust and molecular material), warm (ionized) and hot (S-ray emitting) gas. Early type galaxies have smaller masses of cold ISM (10 to the 7th power - 10 to the 8th power solar mass; Jura et al. 1987) than later type spiral galaxies, while they have far more hot gas (10 to the 9th power - 10 to the tenth power solar mass; Forman et al. 1985, Canizares et al. 1987). In order to understand the relationship between the different phases of the ISM and the role of the ISM in fueling radio continuum sources and star formation, researchers compared observational data from a wide range of wavelengths

    VLBA Continuum and H I Absorption Observations of the Ultra-Luminous Infrared Galaxy IRAS 17208-0014

    Get PDF
    We present phase-referenced VLBI observations of the radio continuum emission from, and the neutral hydrogen 21 cm absorption toward, the Ultra-Luminous Infrared Galaxy IRAS 17208-0014. The observations were carried out at 1362 MHz using the Very Long Baseline Array, including the phased Very Large Array as an element. The high-resolution radio continuum images reveal a nuclear starburst region in this galaxy, which is composed of diffuse emission approximately 670 x 340 pc on the plane of the sky, and a number of compact sources. These sources are most likely to be clustered supernova remnants and/or luminous radio supernovae. Their brightness temperatures range over (2.2-6.6) x 10^{5} K, with radio spectral luminosities between (1-10) x 10^{21} W Hz^{-1}. The total VLBI flux density of the starburst region is ~52 mJy, which is about 50% of the total flux density detected with the VLA at arcsecond resolution. For this galaxy, we derive a massive star formation rate of ~84pm13 M{_\odot} yr^{-1}, and a supernova rate of ~4pm1 yr^{-1}. H I absorption is detected in multiple components with optical depths ranging between 0.3 and 2.5, and velocity widths between 58 and 232 km s^{-1}. The derived column densities, assuming T_{s}=100 K, range over (10-26) x 10^{21} cm^{-2}. The H I absorption shows a strong velocity gradient of 453 km s^{-1} across 0.36 arcsec (274 pc). Assuming Keplerian motion, the enclosed dynamical mass is about 2.3 x 10^9 sin^{-2}i M{_\odot}, comparable to the enclosed dynamical mass estimated from CO observations.Comment: 26 pages total, 6 figures. ApJ accepted. To appear in the April 1, 2003 issue of ApJ. For a version with better images, see http://www.aoc.nrao.edu/~emomjian/IRAS.p

    Raman cooling and heating of two trapped Ba+ ions

    Get PDF
    We study cooling of the collective vibrational motion of two 138Ba+ ions confined in an electrodynamic trap and irradiated with laser light close to the resonances S_1/2-P_1/2 (493 nm) and P_1/2-D_3/2 (650 nm). The motional state of the ions is monitored by a spatially resolving photo multiplier. Depending on detuning and intensity of the cooling lasers, macroscopically different motional states corresponding to different ion temperatures are observed. We also derive the ions' temperature from detailed analytical calculations of laser cooling taking into account the Zeeman structure of the energy levels involved. The observed motional states perfectly match the calculated temperatures. Significant heating is observed in the vicinity of the dark resonances of the Zeeman-split S_1/2-D_3/2 Raman transitions. Here two-photon processes dominate the interaction between lasers and ions. Parameter regimes of laser light are identified that imply most efficient laser cooling.Comment: 8 pages, 5 figure

    On the character of states near the Fermi level in (Ga,Mn)As: impurity to valence band crossover

    Full text link
    We discuss the character of states near the Fermi level in Mn doped GaAs, as revealed by a survey of dc transport and optical studies over a wide range of Mn concentrations. A thermally activated valence band contribution to dc transport, a mid-infrared peak at energy hbar omega approx 200 meV in the ac- conductivity, and the hot photoluminescence spectra indicate the presence of an impurity band in low doped (<<1% Mn) insulating GaAs:Mn materials. Consistent with the implications of this picture, both the impurity band ionization energy inferred from the dc transport and the position of the mid-infrared peak move to lower energies and the peak broadens with increasing Mn concentration. In metallic materials with > 2% doping, no traces of Mn-related activated contribution can be identified in dc-transport, suggesting that the impurity band has merged with the valence band. No discrepancies with this perception are found when analyzing optical measurements in the high-doped GaAs:Mn. A higher energy (hbar omega approx 250 meV) mid-infrared feature which appears in the metallic samples is associated with inter-valence band transitions. Its red-shift with increased doping can be interpreted as a consequence of increased screening which narrows the localized-state valence-band tails and weakens higher energy transition amplitudes. Our examination of the dc and ac transport characteristics of GaAs:Mn is accompanied by comparisons with its shallow acceptor counterparts, confirming the disordered valence band picture of high-doped metallic GaAs:Mn material.Comment: 10 pages, 12 figure
    corecore