22 research outputs found

    White paper on crowdsourced network and QoE measurements – definitions, use cases and challenges

    Get PDF
    The goal of the white paper at hand is as follows. The definitions of the terms build a framework for discussions around the hype topic ‘crowdsourcing’. This serves as a basis for differentiation and a consistent view from different perspectives on crowdsourced network measurements, with the goal to provide a commonly accepted definition in the community. The focus is on the context of mobile and fixed network operators, but also on measurements of different layers (network, application, user layer). In addition, the white paper shows the value of crowdsourcing for selected use cases, e.g., to improve QoE or regulatory issues. Finally, the major challenges and issues for researchers and practitioners are highlighted. This white paper is the outcome of the Würzburg seminar on “Crowdsourced Network and QoE Measurements” which took place from 25-26 September 2019 in Würzburg, Germany. International experts were invited from industry and academia. They are well known in their communities, having different backgrounds in crowdsourcing, mobile networks, network measurements, network performance, Quality of Service (QoS), and Quality of Experience (QoE). The discussions in the seminar focused on how crowdsourcing will support vendors, operators, and regulators to determine the Quality of Experience in new 5G networks that enable various new applications and network architectures. As a result of the discussions, the need for a white paper manifested, with the goal of providing a scientific discussion of the terms “crowdsourced network measurements” and “crowdsourced QoE measurements”, describing relevant use cases for such crowdsourced data, and its underlying challenges. During the seminar, those main topics were identified, intensively discussed in break-out groups, and brought back into the plenum several times. The outcome of the seminar is this white paper at hand which is – to our knowledge – the first one covering the topic of crowdsourced network and QoE measurements

    Towards a 6G embedding sustainability

    Full text link
    From its conception, 6G is being designed with a particular focus on sustainability. The general philosophy of the H2020 Hexa-X project work on sustainability in 6G is based on two principles: to reduce direct negative life cycle impacts of 6G systems as much as possible (Sustainable 6G) and to analyze use cases that maximize positive environmental, social, and economic effects in other sectors of society (6G for Sustainability or its enablement effect). To apply this philosophy, Hexa-X is designing 6G with three sustainability objectives in mind: to enable the reduction of emissions in 6G-powered sectors of society, to reduce the total cost of ownership and to improve energy efficiency. This paper describes these objectives, their associated KPIs and quantitative targets, and the levers to reach them. Furthermore, to maximize the positive effects of 6G through the enablement effect, a link between 6G and the United Nations' Sustainable Development Goals (UN SDGs) framework is proposed and illustrated by Hexa-X use case families.Comment: IEEE ICC 2023 Second International Workshop on Green and Sustainable Networking (GreenNet), May 2023, Rome, Ital

    White Paper on Crowdsourced Network and QoE Measurements – Definitions, Use Cases and Challenges

    Get PDF
    The goal of the white paper at hand is as follows. The definitions of the terms build a framework for discussions around the hype topic ‘crowdsourcing’. This serves as a basis for differentiation and a consistent view from different perspectives on crowdsourced network measurements, with the goal to provide a commonly accepted definition in the community. The focus is on the context of mobile and fixed network operators, but also on measurements of different layers (network, application, user layer). In addition, the white paper shows the value of crowdsourcing for selected use cases, e.g., to improve QoE or regulatory issues. Finally, the major challenges and issues for researchers and practitioners are highlighted. This white paper is the outcome of the Würzburg seminar on “Crowdsourced Network and QoE Measurements” which took place from 25-26 September 2019 in Würzburg, Germany. International experts were invited from industry and academia. They are well known in their communities, having different backgrounds in crowdsourcing, mobile networks, network measurements, network performance, Quality of Service (QoS), and Quality of Experience (QoE). The discussions in the seminar focused on how crowdsourcing will support vendors, operators, and regulators to determine the Quality of Experience in new 5G networks that enable various new applications and network architectures. As a result of the discussions, the need for a white paper manifested, with the goal of providing a scientific discussion of the terms “crowdsourced network measurements” and “crowdsourced QoE measurements”, describing relevant use cases for such crowdsourced data, and its underlying challenges. During the seminar, those main topics were identified, intensively discussed in break-out groups, and brought back into the plenum several times. The outcome of the seminar is this white paper at hand which is – to our knowledge – the first one covering the topic of crowdsourced network and QoE measurements

    Analysis of Energy Intensity and Generic Energy Efficiency Metrics in Communication Networks:Limits, Practical Applications and Case Studies

    No full text
    Energy intensity is the ratio between energy consumed and data volume over a certain time frame. It is frequently used as a metric to indicate the energy efficiency of communication networks and data centres for the provision of digital services, and as a coefficient to apportion the total energy consumption of a network to a specific service. As energy efficiency becomes more important, energy intensity metrics are increasingly used to estimate the energy costs and benefits of changes in data volumes across networks and data centres. Typically, energy intensity integrates annual accounts of energy consumption and data transmitted. At shorter time scales, this metric is affected by the lack of correlation between transmitted data and energy consumption, which leads in some cases to inappropriate conclusions. In this work, we first review the use of energy efficiency metrics in the literature. Then, we define generic measures for energy efficiency as well as energy intensity. The relationships of those measures are analysed, and we show under which conditions they lead to the same or different results. Practical applications of the measures and their insights are demonstrated when benchmarking systems and when considering the value of the system’s output. Furthermore, the limits and pitfalls of the metrics are analysed, especially considering the energy intensity metric for communication networks

    Valid Statements by the Crowd: Statistical Measures for Precision in Crowdsourced Mobile Measurements

    No full text
    Crowdsourced network measurements (CNMs) are becoming increasingly popular as they assess the performance of a mobile network from the end user’s perspective on a large scale. Here, network measurements are performed directly on the end-users’ devices, thus taking advantage of the real-world conditions end-users encounter. However, this type of uncontrolled measurement raises questions about its validity and reliability. The problem lies in the nature of this type of data collection. In CNMs, mobile network subscribers are involved to a large extent in the measurement process, and collect data themselves for the operator. The collection of data on user devices in arbitrary locations and at uncontrolled times requires means to ensure validity and reliability. To address this issue, our paper defines concepts and guidelines for analyzing the precision of CNMs; specifically, the number of measurements required to make valid statements. In addition to the formal definition of the aspect, we illustrate the problem and use an extensive sample data set to show possible assessment approaches. This data set consists of more than 20.4 million crowdsourced mobile measurements from across France, measured by a commercial data provider

    Valid statements by the crowd: statistical measures for precision in crowdsourced mobile measurements

    No full text
    Crowdsourced network measurements (CNMs) are becoming increasingly popular as they assess the performance of a mobile network from the end user's perspective on a large scale. Here, network measurements are performed directly on the end-users' devices, thus taking advantage of the real-world conditions end-users encounter. However, this type of uncontrolled measurement raises questions about its validity and reliability. The problem lies in the nature of this type of data collection. In CNMs, mobile network subscribers are involved to a large extent in the measurement process, and collect data themselves for the operator. The collection of data on user devices in arbitrary locations and at uncontrolled times requires means to ensure validity and reliability. To address this issue, our paper defines concepts and guidelines for analyzing the precision of CNMs; specifically, the number of measurements required to make valid statements. In addition to the formal definition of the aspect, we illustrate the problem and use an extensive sample data set to show possible assessment approaches. This data set consists of more than 20.4 million crowdsourced mobile measurements from across France, measured by a commercial data provider

    Towards a 6G embedding sustainability

    No full text
    From its conception, 6G is being designed with a particular focus on sustainability. The general philosophy of the H2020 Hexa-X project work on sustainability in 6G is based on two principles: to reduce direct negative life cycle impacts of 6G systems as much as possible (Sustainable 6G) and to analyze use cases that maximize positive environmental, social, and economic effects in other sectors of society (6G for Sustainability or its enablement effect). To apply this philosophy, Hexa-X is designing 6G with three sustainability objectives in mind: to enable the reduction of emissions in 6G-powered sectors of society, to reduce the total cost of ownership and to improve energy efficiency. This paper describes these objectives, their associated KPIs and quantitative targets, and the levers to reach them. Furthermore, to maximize the positive effects of 6G through the enablement effect, a link between 6G and the United Nations' Sustainable Development Goals (UN SDGs) framework is proposed and illustrated by Hexa-X use case families
    corecore