97 research outputs found

    Deep learning-based survival prediction for multiple cancer types using histopathology images

    Full text link
    Prognostic information at diagnosis has important implications for cancer treatment and monitoring. Although cancer staging, histopathological assessment, molecular features, and clinical variables can provide useful prognostic insights, improving risk stratification remains an active research area. We developed a deep learning system (DLS) to predict disease specific survival across 10 cancer types from The Cancer Genome Atlas (TCGA). We used a weakly-supervised approach without pixel-level annotations, and tested three different survival loss functions. The DLS was developed using 9,086 slides from 3,664 cases and evaluated using 3,009 slides from 1,216 cases. In multivariable Cox regression analysis of the combined cohort including all 10 cancers, the DLS was significantly associated with disease specific survival (hazard ratio of 1.58, 95% CI 1.28-1.70, p<0.0001) after adjusting for cancer type, stage, age, and sex. In a per-cancer adjusted subanalysis, the DLS remained a significant predictor of survival in 5 of 10 cancer types. Compared to a baseline model including stage, age, and sex, the c-index of the model demonstrated an absolute 3.7% improvement (95% CI 1.0-6.5) in the combined cohort. Additionally, our models stratified patients within individual cancer stages, particularly stage II (p=0.025) and stage III (p<0.001). By developing and evaluating prognostic models across multiple cancer types, this work represents one of the most comprehensive studies exploring the direct prediction of clinical outcomes using deep learning and histopathology images. Our analysis demonstrates the potential for this approach to provide prognostic information in multiple cancer types, and even within specific pathologic stages. However, given the relatively small number of clinical events, we observed wide confidence intervals, suggesting that future work will benefit from larger datasets

    Expression of Toll-Like Receptors in the Developing Brain

    Get PDF
    Toll-like receptors (TLR) are key players of the innate and adaptive immune response in vertebrates. The original protein Toll in Drosophila melanogaster regulates both host defense and morphogenesis during development. Making use of real-time PCR, in situ hybridization, and immunohistochemistry we systematically examined the expression of TLR1–9 and the intracellular adaptor molecules MyD88 and TRIF during development of the mouse brain. Expression of TLR7 and TLR9 in the brain was strongly regulated during different embryonic, postnatal, and adult stages. In contrast, expression of TLR1–6, TLR8, MyD88, and TRIF mRNA displayed no significant changes in the different phases of brain development. Neurons of various brain regions including the neocortex and the hippocampus were identified as the main cell type expressing both TLR7 and TLR9 in the developing brain. Taken together, our data reveal specific expression patterns of distinct TLRs in the developing mouse brain and lay the foundation for further investigation of the pathophysiological significance of these receptors for developmental processes in the central nervous system of vertebrates

    Neoplastic Transformation of T Lymphocytes through Transgenic Expression of a Virus Host Modification Protein

    Get PDF
    Virus host evasion genes are ready-made tools for gene manipulation and therapy. In this work we have assessed the impact in vivo of the evasion gene A238L of the African Swine Fever Virus, a gene which inhibits transcription mediated by both NF-κB and NFAT. The A238L gene has been selectively expressed in mouse T lymphocytes using tissue specific promoter, enhancer and locus control region sequences for CD2. The resulting two independently derived transgenic mice expressed the transgene and developed a metastasic, angiogenic and transplantable CD4+CD8+CD69– lymphoma. The CD4+CD8+CD69– cells also grew vigorously in vitro. The absence of CD69 from the tumour cells suggests that they were derived from T cells at a stage prior to positive selection. In contrast, transgenic mice similarly expressing a mutant A238L, solely inhibiting transcription mediated by NF-κB, were indistinguishable from wild type mice. Expression of Rag1, Rag2, TCRβ-V8.2, CD25, FoxP3, Bcl3, Bcl2 l14, Myc, IL-2, NFAT1 and Itk, by purified CD4+CD8+CD69– thymocytes from A238L transgenic mice was consistent with the phenotype. Similarly evaluated expression profiles of CD4+CD8+ CD69– thymocytes from the mutant A238L transgenic mice were comparable to those of wild type mice. These features, together with the demonstration of (mono-)oligoclonality, suggest a transgene-NFAT-dependent transformation yielding a lymphoma with a phenotype reminiscent of some acute lymphoblastic lymphomas

    Widespread Regulation of miRNA Biogenesis at the Dicer Step by the Cold-Inducible RNA-Binding Protein, RBM3

    Get PDF
    MicroRNAs (miRNAs) play critical roles in diverse cellular events through their effects on translation. Emerging data suggest that modulation of miRNA biogenesis at post-transcriptional steps by RNA-binding proteins is a key point of regulatory control over the expression of some miRNAs and the cellular processes they influence. However, the extent and conditions under which the miRNA pathway is amenable to regulation at posttranscriptional steps are poorly understood. Here we show that RBM3, a cold-inducible, developmentally regulated RNA-binding protein and putative protooncogene, is an essential regulator of miRNA biogenesis. Utilizing miRNA array, Northern blot, and PCR methods, we observed that over 60% of miRNAs detectable in a neuronal cell line were significantly downregulated by knockdown of RBM3. Conversely, for select miRNAs assayed by Northern blot, induction of RBM3 by overexpression or mild hypothermia increased their levels. Changes in miRNA expression were accompanied by changes in the levels of their ∼70 nt precursors, whereas primary transcript levels were unaffected. Mechanistic studies revealed that knockdown of RBM3 does not reduce Dicer activity or impede transport of pre-miRNAs into the cytoplasm. Rather, we find that RBM3 binds directly to ∼70 nt pre-miRNA intermediates and promotes / de-represses their ability as larger ribonucleoproteins (pre-miRNPs) to associate with active Dicer complexes. Our findings suggest that the processing of a majority of pre-miRNPs by Dicer is subject to an intrinsic inhibitory influence that is overcome by RBM3 expression. RBM3 may thus orchestrate changes in miRNA expression during hypothermia and other cellular stresses, and in the euthermic contexts of early development, differentiation, and oncogenesis where RBM3 expression is highly elevated. Additionally, our data suggest that temperature-dependent changes in miRNA expression mediated by RBM3 may contribute to the therapeutic effects of hypothermia, and are an important variable to consider in in vitro studies of translation-dependent cellular events

    Charting the NF-κB Pathway Interactome Map

    Get PDF
    Inflammation is part of a complex physiological response to harmful stimuli and pathogenic stress. The five components of the Nuclear Factor κB (NF-κB) family are prominent mediators of inflammation, acting as key transcriptional regulators of hundreds of genes. Several signaling pathways activated by diverse stimuli converge on NF-κB activation, resulting in a regulatory system characterized by high complexity. It is increasingly recognized that the number of components that impinges upon phenotypic outcomes of signal transduction pathways may be higher than those taken into consideration from canonical pathway representations. Scope of the present analysis is to provide a wider, systemic picture of the NF-κB signaling system. Data from different sources such as literature, functional enrichment web resources, protein-protein interaction and pathway databases have been gathered, curated, integrated and analyzed in order to reconstruct a single, comprehensive picture of the proteins that interact with, and participate to the NF-κB activation system. Such a reconstruction shows that the NF-κB interactome is substantially different in quantity and quality of components with respect to canonical representations. The analysis highlights that several neglected but topologically central proteins may play a role in the activation of NF-κB mediated responses. Moreover the interactome structure fits with the characteristics of a bow tie architecture. This interactome is intended as an open network resource available for further development, refinement and analysis

    Regulation of MicroRNA Biogenesis: A miRiad of mechanisms

    Get PDF
    microRNAs are small, non-coding RNAs that influence diverse biological functions through the repression of target genes during normal development and pathological responses. Widespread use of microRNA arrays to profile microRNA expression has indicated that the levels of many microRNAs are altered during development and disease. These findings have prompted a great deal of investigation into the mechanism and function of microRNA-mediated repression. However, the mechanisms which govern the regulation of microRNA biogenesis and activity are just beginning to be uncovered. Following transcription, mature microRNA are generated through a series of coordinated processing events mediated by large protein complexes. It is increasingly clear that microRNA biogenesis does not proceed in a 'one-size-fits-all' manner. Rather, individual classes of microRNAs are differentially regulated through the association of regulatory factors with the core microRNA biogenesis machinery. Here, we review the regulation of microRNA biogenesis and activity, with particular focus on mechanisms of post-transcriptional control. Further understanding of the regulation of microRNA biogenesis and activity will undoubtedly provide important insights into normal development as well as pathological conditions such as cardiovascular disease and cancer
    • …
    corecore