11 research outputs found

    Cruise Report RV Heincke HE560

    Get PDF
    The primary aim of this expedition was to investigate the spatial and temporal distribution, the ecology and physiology, as well as competition of co-occurring gadoid species (Atlantic cod, Polar cod, haddock) in the communities of Arctic and Atlantic influence around Svalbard. We sampled the benthic and pelagic communities (including plankton) on the shallow shelf regions of Svalbard to estimate the effects of climate change on Arctic ecosystems to obtain a picture of the entire system structure and function for a long-term monitoring program of the ‘Atlantification’ of the Svalbard region. We assessed the potential impact of changes in trophic interaction (predator-prey relations) of Atlantic cod (Gadus morhua), Polar cod (Boreogadus saida), haddock (Melanogrammus aeglefinus) and decapod crabs on the productivity and stability of benthic and pelagic communities in Arctic ecosystems, into which their distribution ranges now extend due to ocean warming. In addition to a stock assessment and distribution analysis of gadoid fish and decapod crabs, we aimed to obtain specimens of these species in the Atlantic and polar waters around Svalbard, which were transported alive back to Germany. Laboratory experiments under scenarios of climate change at the Alfred Wegener Institute then provided (and still provide) further insight into capacities for adaptation, performance and interaction of selected species of the Arctic ecosystem around Svalbard. The results will on the one hand be used in an international Norwegian-German project and the pan-Arctic data management system (Piepenburg et al. 2011), on the other hand they will flow into fisheries modelling at the University of Hamburg, the Thuenen Institute and socio-economic modelling approaches that build on the German ocean acidification project BIOACID (www.bioacid.de)

    Benthic foraminiferal patchiness-revisited

    Get PDF
    DATA AVAILABILITY : The data discussed in this paper are available in Appendix Tables A1–A4 and in the electronic Supplement.SUPPLEMENT : Literature data and G. turgida standing stocks as well as the record of oxygen concentrations at the AlsbĂ€ck Deep are available as an online Supplement to this paper.Many benthic organisms show aggregated distribution patterns due to the spatial heterogeneity of niches or food availability. In particular, high-abundance patches of benthic foraminifera have been reported that extend from centimetres to metres in diameter in salt marshes or shallow waters. The dimensions of spatial variations of shelf or deep-sea foraminiferal abundances have not yet been identified. Therefore, we studied the distribution of Globobulimina turgida dwelling in the 0–3 cm surface sediment at 118m water depth in the AlsbĂ€ck Deep, Gullmar Fjord, Sweden. Standing stock data from 58 randomly replicated samples depicted a log-normal distribution of G. turgida with weak evidence for an aggregated distribution on a decimetre scale. A model simulation with different patch sizes, outlines, and impedances yielded no significant correlation with the observed variability of G. turgida standing stocks. Instead, a perfect match with a random log-normal distribution of population densities was obtained. The data–model comparison revealed that foraminiferal populations in the Gullmar Fjord were not moulded by any underlying spatial structure beyond 10 cm diameter. Log-normal population densities also characterise data from contiguous, gridded, or random sample replicates reported in the literature. Here, a centimetre-scale heterogeneity was found and interpreted to be a result of asexual reproduction events and restricted mobility of juveniles. Standing stocks of G. turgida from the AlsbĂ€ck Deep temporal data series from 1994 to 2021 showed two distinct cohorts of samples of either high or low densities. These cohorts are considered to represent two distinct ecological settings: hypoxic and well-ventilated conditions in the Gullmar Fjord. Environmental forcing is therefore considered to impact the population structure of benthic foraminifera rather than their reproduction dynamics.The Deutsche Forschungsgemeinschaft (DFG) and the Royal Swedish Academy of Sciences from the University of Gothenburg. The article processing charges for this open-access publication were covered by the GEOMAR Helmholtz Centre for Ocean Research Kiel.https://journal-of-micropalaeontology.net/index.htmlam2024BiochemistryGeneticsMicrobiology and Plant PathologySDG-14:Life below wate

    Interactions of Globobulimina Auriculata with Nematodes: Predator Or Prey?

    No full text
    Studies of carnivorous behaviour of benthic foraminifers are rare and mostly focused on laboratory experiments. Controlled experiments have shown that some agglutinated and intertidal species prey on meio- to macrofaunal metazoans. Here we present observations of the behaviour of specimens of the infaunal benthic foraminiferal species, Globobulimina auriculata and G. turgida, made within several hours of collection from ∌117 m depth in the AlsbĂ€ck Deep of the Gullmar Fjord, Sweden. We observed live nematodes within the tests of G. auriculata. Video observations recorded over a 17-hour period showed a G. auriculata specimen with a living nematode whose tail appeared to be entangled within the foraminifer's reticulopodial network. The nematode eventually coiled around the foraminifer's aperture and became much less active, though ingestion into the foraminifer's test was not documented. If these observations indicate feeding by G. auriculata, they differ from previous observations of predation by Ammonia tepida, which utilised external reticulopodial activity to extract the soft tissue of its prey. An alternative interpretation of the video observations, consistent with the observations of the live nematodes inside G. auriculata, was that the nematode was attempting to prey upon the foraminifer. The G. turgida specimens, in contrast, relatively quickly surrounded themselves in soft sediment spheres commonly seen in deposit-feeding foraminifers, and were never observed with nematodes within their tests. We speculate that these contrasting feeding strategies might reduce competition and facilitate the coexistence of these two globobuliminid species

    Benthic foraminiferal patchiness – revisited

    Get PDF
    Many benthic organisms show aggregated distribution patterns due to the spatial heterogeneity of niches or food availability. In particular, high-abundance patches of benthic foraminifera have been reported that extend from centimetres to metres in diameter in salt marshes or shallow waters. The dimensions of spatial variations of shelf or deep-sea foraminiferal abundances have not yet been identified. Therefore, we studied the distribution of Globobulimina turgida dwelling in the 0–3 cm surface sediment at 118 m water depth in the AlsbĂ€ck Deep, Gullmar Fjord, Sweden. Standing stock data from 58 randomly replicated samples depicted a log-normal distribution of G. turgida with weak evidence for an aggregated distribution on a decimetre scale. A model simulation with different patch sizes, outlines, and impedances yielded no significant correlation with the observed variability of G. turgida standing stocks. Instead, a perfect match with a random log-normal distribution of population densities was obtained. The data–model comparison revealed that foraminiferal populations in the Gullmar Fjord were not moulded by any underlying spatial structure beyond 10 cm diameter. Log-normal population densities also characterise data from contiguous, gridded, or random sample replicates reported in the literature. Here, a centimetre-scale heterogeneity was found and interpreted to be a result of asexual reproduction events and restricted mobility of juveniles. Standing stocks of G. turgida from the AlsbĂ€ck Deep temporal data series from 1994 to 2021 showed two distinct cohorts of samples of either high or low densities. These cohorts are considered to represent two distinct ecological settings: hypoxic and well-ventilated conditions in the Gullmar Fjord. Environmental forcing is therefore considered to impact the population structure of benthic foraminifera rather than their reproduction dynamics

    Food supply and size class depending variations in phytodetritus intake in the benthic foraminifer Ammonia tepida

    No full text
    Ammonia tepida is a common and abundant benthic foraminifer in intertidal mudflats. Benthic foraminifera are primary consumers and detritivores and act as key players in sediment nutrient fluxes. In this study, laboratory feeding experiments using isotope-labeled phytodetritus were carried out with A. tepida collected at the German Wadden Sea, to investigate the response of A. tepida to varying food supply. Feeding mode (single pulse, constant feeding; different incubation temperatures) caused strong variations in cytoplasmic carbon and nitrogen cycling, suggesting generalistic adaptations to variations in food availability. To study the influence of intraspecific size to foraminiferal carbon and nitrogen cycling, three size fractions (125–250 ”m, 250–355 ”m, >355 ”m) of A. tepida specimens were separated. Small individuals showed higher weight specific intake for phytodetritus, especially for phytodetrital nitrogen, highlighting that size distribution within foraminiferal populations is relevant to interpret foraminiferal carbon and nitrogen cycling. These results were used to extrapolate the data to natural populations of living A. tepida in sediment cores, demonstrating the impact of high abundances of small individuals on phytodetritus processing and nutrient cycling. It is estimated that at high abundances of individuals in the 125–250 ”m size fraction, Ammonia populations can account for more than 11% of phytodetritus processing in intertidal benthic communities

    Increased temperature causes different carbon and nitrogen processing patterns in two common intertidal foraminifera (Ammonia tepida and Haynesina germanica)

    No full text
    Benthic foraminifera are highly abundant heterotrophic protists in marine sediments, but future environmental changes will challenge the tolerance limits of intertidal species. Metabolic rates and physiological processes in foraminifera are strongly dependent on environmental temperatures. Temperature-related stress could therefore impact foraminiferal food source processing efficiency and might result in altered nutrient fluxes through the intertidal food web. In this study, we performed a laboratory feeding experiment on Ammonia tepida and Haynesina germanica, two dominant foraminiferal species of the German Wadden Sea/Friedrichskoog, to test the effect of temperature on phytodetritus retention. The specimens were fed with 13C and 15N labelled freeze-dried Dunaliella tertiolecta (green algae) at the start of the experiment and were incubated at 20, 25 and 30 °C respectively. Dual labelling was applied to observe potential temperature effects on the relation of phytodetrital carbon and nitrogen retention. Samples were taken over a period of 2 weeks. Foraminiferal cytoplasm was isotopically analysed to investigate differences in carbon and nitrogen uptake derived from the food source. Both species showed a positive response to the provided food source, but carbon uptake rates of A. tepida were 10-fold higher compared to those of H. germanica. Increased temperatures had a far stronger impact on the carbon uptake of H. germanica than on A. tepida. A distinct increase in the levels of phytodetrital-derived nitrogen (compared to more steady carbon levels) could be observed over the course of the experiment in both species. The results suggest that higher temperatures have a significant negative effect on the carbon exploitation of H. germanica. For A. tepida, higher carbon uptake rates and the enhanced tolerance range for higher temperatures could outline an advantage in warmer periods if the main food source consists of chlorophyte phytodetritus. These conditions are likely to impact nutrient fluxes in A. tepida/H. germanica associations.© Author(s) 201

    Effect of increased temperature on carbon and nitrogen uptake of two intertidal foraminifera (Ammonia tepida and Haynesinagermanica)

    No full text
    Benthic foraminifera are highly abundant heterotrophic protists in marine sediments, but intertidal communities are expected to undergo future changes. Environmental changes can exceed the tolerance limits of intertidal species causing a shift in species composition which might result in altered nutrient fluxes. Factors limiting the abundance of specific foraminiferal species can be temperature related stress tolerance or food source processing efficiency. In this study, we performed a laboratory feeding experiment on Ammonia tepida and Haynesina germanica, two dominant foraminiferal species of the GermanWadden Sea/Friedrichskoog, to test the effect of temperature on phytodetritus ingestion. The specimens were fed with 13C and 15N labelled freeze dried Dunaliella tertiolecta (green algae) at the start of the experiment and were incubated at 20C, 25C, and 30C respectively. Dual labelling was applied to observe potential temperature effects on the relation of phytodetrital carbon and nitrogen retention. Samples were taken over a period of two weeks. Foraminiferal cytoplasm was isotopically analysed to investigate differences in carbon and nitrogen uptake derived from the food source. Both species showed a positive response to the provided food source, but carbon uptake rates of A. tepida were 10-fold higher compared to those of H. germanica. Increased temperatures had a far stronger impact on carbon uptake of H. germanica than on A. tepida. A distinct increase in levels of phytodetrital derived nitrogen (compared to more steady carbon levels) could be observed over the course of the experiment. The results suggest that higher temperatures have a significant negative effect on the carbon exploitation of H. germanica. For A. tepida, higher carbon uptake rates and the enhanced tolerance range for higher temperatures could outline an advantage in warmer periods, if the main food source consists of chlorophyte phytodetritus. These conditions are likely to impact nutrient fluxes in A. tepida/H. germanica associations.© Author(s) 201

    The distinct roles of two intertidal foraminiferal species in phytodetrital carbon and nitrogen fluxes – results from laboratory feeding experiments

    No full text
    Benthic foraminifera play a major role as primary consumers and detrivores redistributing organic carbon and nitrogen in intertidal environments. Here we compared the differences of phytodetrital carbon and nitrogen intake and turnover of two dominant intertidal foraminifera, Ammonia tepida and Haynesina germanica. Their lifestyles in relation to feeding behavior (feeding preferences, intake and turnover of phytodetrital carbon and nitrogen) and temperature adaptations were compared to obtain a closer definition of their specific roles in intertidal organic matter processing. For this comparison, we carried out a series of short-term laboratory incubations with stable-isotope-labeled (13C and 15N) detritus as the food source. We compared the response of the two species to diatom detritus at three different temperatures (15, 20, 25 ∘C). Ammonia tepida showed a very high, temperature-influenced intake and turnover rates with more excessive carbon turnover, compared to nitrogen. The fairly low metabolic nitrogen turnover in H. germanica was not affected by temperature and was higher than the carbon turnover. This might be related with the chloroplast husbandry in H. germanica and its lower demands for food-derived nitrogen sources. Ammonia tepida prefers a soft chlorophyte food source over diatom detritus, which is harder to break down. In conclusion, A. tepida shows a generalist behavior that links with high fluxes of organic matter (OM). Due to its high rates of OM processing and abundances, we conclude that A. tepida is an important key player in intertidal carbon and nitrogen turnover, specifically in the short-term processing of OM and the mediation of dissolved nutrients to associated microbes and primary producers. In contrast, H. germanica is a highly specialized species with low rates of carbon and nitrogen budgeting.© Author(s) 201
    corecore