138 research outputs found

    Modelling centrifugal membrane deployment of solar sails with the discrete element method

    Get PDF
    Spin-stabilized solar sails have been extensively studied in recent years. In this paper, a DEM-based approach is proposed for dynamic analysis of the centrifugal deployment of solar sails. In order to validate the proposed approach, the deployment of a small-scale solar sail similar to “IKAROS” is studied. The membrane is discretised into a number of particles, with no physical contact between them. Non-contact interaction is introduced to model in-plane stiffness of the membrane. In order to improve the accuracy, additional forces are applied to the mass particles to model buckling strength, crease stiffness, air drag and damping. The predicted results of the membrane deployment are compared with the experimental data and numerical results in the literature

    Laser frequency stabilization and photoacoustic detection based on the tapered fiber coupled crystalline resonator

    Full text link
    We demonstrate laser frequency stabilization using a high-Q MgF2 crystalline whispering gallery mode resonator coupled with a tapered fiber. We discovered that the tapered fiber, acting as a microcantilever, exhibits mechanical resonance characteristics that is capable of transmitting acoustic perturbations to the frequency locking loop. Both experimental and theoretical investigations into the influence of external acoustic waves on the coupling system were conducted. After acoustic isolation, the locked laser exhibits a minimum frequency noise of 0.4Hz2/Hz at 7kHz and an integral linewidth of 68Hz (0.1s integration time). Benefiting from the ultralow frequency noise of the stabilized laser, it achieves a minimum noise equivalent acoustic signal level of 4.76*10-4 Pa/Hz1/2. Our results not only facilitate the realization of ultralow noise lasers but also serves as a novel and sensitive photoacoustic detector

    Site-Specific 111In-Radiolabeling of Dual-PEGylated Porous Silicon Nanoparticles and Their In Vivo Evaluation in Murine 4T1 Breast Cancer Model

    Get PDF
    Polyethylene glycol (PEG) has been successfully used for improving circulation time of several nanomaterials but prolonging the circulation of porous silicon nanoparticles (PSi NPs) has remained challenging. Here, we report a site specific radiolabeling of dual-PEGylated thermally oxidized porous silicon (DPEG-TOPSi) NPs and investigation of influence of the PEGylation on blood circulation time of TOPSi NPs. Trans-cyclooctene conjugated DPEG-TOPSi NPs were radiolabeled through a click reaction with [111In]In-DOTA-PEG4-tetrazine (DOTA = 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid) and the particle behavior was evaluated in vivo in Balb/c mice bearing 4T1 murine breast cancer allografts. The dual-PEGylation significantly prolonged circulation of [111In]In-DPEG-TOPSi particles when compared to non-PEGylated control particles, yielding 10.8 ± 1.7% of the injected activity/g in blood at 15 min for [111In]In-DPEG-TOPSi NPs. The improved circulation time will be beneficial for the accumulation of targeted DPEG-TOPSi to tumors

    Site-Specific 111In-Radiolabeling of Dual-PEGylated Porous Silicon Nanoparticles and Their In Vivo Evaluation in Murine 4T1 Breast Cancer Model

    Get PDF
    Polyethylene glycol (PEG) has been successfully used for improving circulation time of several nanomaterials but prolonging the circulation of porous silicon nanoparticles (PSi NPs) has remained challenging. Here, we report a site specific radiolabeling of dual-PEGylated thermally oxidized porous silicon (DPEG-TOPSi) NPs and investigation of influence of the PEGylation on blood circulation time of TOPSi NPs. Trans-cyclooctene conjugated DPEG-TOPSi NPs were radiolabeled through a click reaction with [111In]In-DOTA-PEG4-tetrazine (DOTA = 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid) and the particle behavior was evaluated in vivo in Balb/c mice bearing 4T1 murine breast cancer allografts. The dual-PEGylation significantly prolonged circulation of [111In]In-DPEG-TOPSi particles when compared to non-PEGylated control particles, yielding 10.8 ± 1.7% of the injected activity/g in blood at 15 min for [111In]In-DPEG-TOPSi NPs. The improved circulation time will be beneficial for the accumulation of targeted DPEG-TOPSi to tumors

    Black porous silicon as a photothermal agent and immunoadjuvant for efficient antitumor immunotherapy

    Get PDF
    Photothermal therapy (PTT) in combination with other treatment modalities has shown great potential to activate immunotherapy against tumor metastasis. However, the nanoparticles (NPs) that generate PTT have served as the photothermal agent only. Moreover, researchers have widely utilized highly immuno-genic tumor models to evaluate the immune response of these NPs thus giving over-optimistic results. In the present study black porous silicon (BPSi) NPs were developed to serve as both the photothermal agent and the adjuvant for PTT-based antitumor immunotherapy. We found that the poorly immunogenic tumor models such as B16 are more valid to evaluate NP-based immunotherapy than the widely used im-munogenic models such as CT26. Based on the B16 cancer model, a cocktail regimen was developed that combined BPSi-based PTT with doxorubicin (DOX) and cytosine-phosphate-guanosine (CpG). BPSi-based PTT was an important trigger to activate the specific immunotherapy to inhibit tumor growth by featuring the selective upregulation of TNF-alpha. Either by adding a low dose DOX or by prolonging the laser heating time, a similar efficacy of immunotherapy was evoked to inhibit tumor growth. Moreover, BPSi acted as a co-adjuvant for CpG to significantly boost the immunotherapy. The present study demonstrates that the BPSi-based regimen is a potent and safe antitumor immunotherapy modality. Moreover, our study high-lighted that tuning the laser heating parameters of PTT is an alternative to the toxic cytostatic to evoke immunotherapy, paving the way to optimize the PTT-based combination therapy for enhanced efficacy and decreased side effects.Peer reviewe
    • 

    corecore