13 research outputs found

    Effect of rubber particles and fibers on the dynamic compressive behavior of novel ultra-lightweight cement composites:Numerical simulations and metamodeling

    Get PDF
    This paper presents, first, a finite element (FE) model for a rubberized ultra-lightweight cement composite (RULCC), which uses a modified Holmquist-Johnson-Concrete (H-J-C) constitutive law that is calibrated and validated by new Split Hopkinson pressure bar (SHPB) tests on the material. The validated FE model is used then as the core of a cloud computing platform using a multi node cloud simulation framework to carry out the parametric simulations, which generate required data to develop a meta-model to predict the dynamic impact strength of the RULCC. Design of experiment (DoE) and Generic Programming techniques are the main instruments in developing meta-models with reduced size of data. Finally, a meta-model of explicit expression, which is the first of its kind and considers the effect of rubber ratio, fiber ratio and dynamic impact strain rate, is proposed to predict the dynamic impact strength of the RULCC

    Edge Detection Algorithm of a Symmetric Difference Kernel SAR Image Based on the GAN Network Model

    No full text
    The symmetrical difference kernel SAR image edge detection algorithm based on the Canny operator can usually achieve effective edge detection of a single view image. When detecting a multi-view SAR image edge, it has the disadvantage of a low detection accuracy. An edge detection algorithm for a symmetric difference nuclear SAR image based on the GAN network model is proposed. Multi-view data of a symmetric difference nuclear SAR image are generated by the GAN network model. According to the results of multi-view data generation, an edge detection model for an arbitrary direction symmetric difference nuclear SAR image is constructed. A non-edge is eliminated by edge post-processing. The Hough transform is used to calculate the edge direction to realize the accurate detection of the edge of the SAR image. The experimental results show that the average classification accuracy of the proposed algorithm is 93.8%, 96.85% of the detection edges coincide with the correct edges, and 97.08% of the detection edges fall into the buffer of three pixel widths, whichshows that the proposed algorithm has a high accuracy of edge detection for kernel SAR images

    OsIRO3 Plays an Essential Role in Iron Deficiency Responses and Regulates Iron Homeostasis in Rice

    No full text
    Iron (Fe) homeostasis is essential for plant growth and development, and it is strictly regulated by a group of transcriptional factors. Iron-related transcription factor 3 (OsIRO3) was previously identified as a negative regulator for Fe deficiency response in rice. However, the molecular mechanisms by which OsIRO3 regulate Fe homeostasis is unclear. Here, we report that OsIRO3 is essential for responding to Fe deficiency and maintaining Fe homeostasis in rice. OsIRO3 is expressed in the roots, leaves, and base nodes, with a higher level in leaf blades at the vegetative growth stage. Knockout of OsIRO3 resulted in a hypersensitivity to Fe deficiency, with severe necrosis on young leaves and defective root development. The iro3 mutants accumulated higher levels of Fe in the shoot under Fe-deficient conditions, associated with upregulating the expression of OsNAS3, which lead to increased accumulation of nicotianamine (NA) in the roots. Further analysis indicated that OsIRO3 can directly bind to the E-box in the promoter of OsNAS3. Moreover, the expression of typical Fe-related genes was significantly up-regulated in iro3 mutants under Fe-sufficient conditions. Thus, we conclude that OsIRO3 plays a key role in responding to Fe deficiency and regulates NA levels by directly, negatively regulating the OsNAS3 expression

    Nogo-B Facilitates LPS-Mediated Immune Responses by Up-Regulation of TLR4-Signaling in Macrophage RAW264.7

    No full text
    Background/Aims: Nogo-B, a member of the reticulon family of proteins, is mainly located in the endoplasmic reticulum (ER). Here, we investigate the function and mechanism of Nogo-B in the regulation of TLR4-associated immune responses in the macrophage cell line of RAW264.7. Methods: Nogo-B was up- and down-regulated through the use of appropriate adenoviral vectors or siRNA, and the effects of Nogo-B on macrophages under liposaccharide (LPS) stimulation were evaluated via western blotting, immunofluorescence, enzyme-linked immunosorbent assay (ELISA), flow cytometric analysis, and transwell assay. Results: Our data indicates that the protein of Nogo-B was down-regulated in a time- and dose-dependent manner following LPS administration in the macrophage. Nogo-B overexpression increased the production of inflammatory cytokines (MCP-1, TNF-α, IL-1β, and TGF-β), enhanced macrophage migration activities, activated major histocompatibility complex II (MHC II), and elevated the expression of macrophage scavenger receptor 1(MSR1), all of which suggest that Nogo-B is necessary for immune responses and plays an important role in regulating macrophage recruitment. Mechanistically, Nogo-B may enhance TLR4 expression in macrophage surfaces, activate mitogen-activated protein kinase (MAPK) pathways, and initiate inflammatory responses. Conclusion: These findings illustrate the key regulatory functions of Nogo-B in facilitating LPS-mediated immune responses through promoting the phosphorylation of MAP kinase

    The Splicing Factor OsSCL26 Regulates Phosphorus Homeostasis in Rice

    No full text
    Phosphorus (P) is an essential nutrient for plant growth. However, its deficiency poses a significant challenge for crop production. To overcome the low P availability, plants have developed various strategies to regulate their P uptake and usage. In this study, we identified a splicing factor, OsSCL26, belonging to the Serine/arginine-rich (SR) proteins, that plays a crucial role in regulating P homeostasis in rice. OsSCL26 is expressed in the roots, leaves, and base nodes, with higher expression levels observed in the leaf blades during the vegetative growth stage. The OsSCL26 protein is localized in the nucleus. Mutation of OsSCL26 resulted in the accumulation of P in the shoot compared to the wild-type, and the dwarf phenotype of the osscl26 mutant was alleviated under low P conditions. Further analysis revealed that the accumulated P concentrations in the osscl26 mutant were higher in the old leaves and lower in the new leaves. Furthermore, the P-related genes, including the PHT and SPX family genes, were upregulated in the osscl26 mutant, and the exclusion/inclusion ratio of the two genes, OsSPX-MFS2 and OsNLA2, was increased compared to wild-type rice. These findings suggest that the splicing factor OsSCL26 plays a pivotal role in maintaining P homeostasis in rice by influencing the absorption and distribution of P through the regulation of the transcription and splicing of the P transport genes

    DataSheet_1_Akkermansia muciniphila suppressing nonalcoholic steatohepatitis associated tumorigenesis through CXCR6+ natural killer T cells.pdf

    No full text
    IntroductionGut microbiota plays a crucial role in the development and progression of nonalcoholic steatohepatitis (NASH) and associated hepatocellular carcinoma (HCC). Akkermansia muciniphila was reported to inhibit inflammation-associated cancer in the intestine. The anti-NASH ability of A. muciniphila has recently been found. Thus, we were to investigate whether supplementation of A. muciniphila could prevent NASH-associated HCC.MethodsIn a model we called STAM, male C57BL/6J mice were subcutaneously injected with 200 µg streptozotocin at 4 days after birth, and fed with high-fat diet at 4 weeks of age to induce NASH-associated HCC. Faeces from mice and patients with NASH-related HCC were collected for 16S rRNA sequencing. STAM mice were orally administered either saline or A. muciniphila twice a day starting at 4 or 10 weeks of age. The effects of A. muciniphila on the immune responses were also evaluated.ResultsPatients and mice with NASH-related HCC showed significantly reduced gut A. muciniphila in comparison to healthy controls. Administration of breast milk-isolated A. muciniphila (AM06) but not feces-isolated A. muciniphila (AM02) could improve NASH severity. Interestingly, breast milk-isolated A. muciniphila treatment suppressed the progression of NASH to HCC, accompanied with an increased hepatic CXCR6+ natural killer T (NKT) cell and decreased macrophage infiltration. The antitumor ability of A. muciniphila was not evident in NKT cell-deficient mice (CD1d-/- and CXCR6-/-). In vitro, A. muciniphila promoted the killing of hepG2 cells by NKT cells.DiscussionOur study will provide the rationale for the application of A. muciniphila to treat NASH and for the prevention of its progression to HCC.</p

    Table_1_Akkermansia muciniphila suppressing nonalcoholic steatohepatitis associated tumorigenesis through CXCR6+ natural killer T cells.docx

    No full text
    IntroductionGut microbiota plays a crucial role in the development and progression of nonalcoholic steatohepatitis (NASH) and associated hepatocellular carcinoma (HCC). Akkermansia muciniphila was reported to inhibit inflammation-associated cancer in the intestine. The anti-NASH ability of A. muciniphila has recently been found. Thus, we were to investigate whether supplementation of A. muciniphila could prevent NASH-associated HCC.MethodsIn a model we called STAM, male C57BL/6J mice were subcutaneously injected with 200 µg streptozotocin at 4 days after birth, and fed with high-fat diet at 4 weeks of age to induce NASH-associated HCC. Faeces from mice and patients with NASH-related HCC were collected for 16S rRNA sequencing. STAM mice were orally administered either saline or A. muciniphila twice a day starting at 4 or 10 weeks of age. The effects of A. muciniphila on the immune responses were also evaluated.ResultsPatients and mice with NASH-related HCC showed significantly reduced gut A. muciniphila in comparison to healthy controls. Administration of breast milk-isolated A. muciniphila (AM06) but not feces-isolated A. muciniphila (AM02) could improve NASH severity. Interestingly, breast milk-isolated A. muciniphila treatment suppressed the progression of NASH to HCC, accompanied with an increased hepatic CXCR6+ natural killer T (NKT) cell and decreased macrophage infiltration. The antitumor ability of A. muciniphila was not evident in NKT cell-deficient mice (CD1d-/- and CXCR6-/-). In vitro, A. muciniphila promoted the killing of hepG2 cells by NKT cells.DiscussionOur study will provide the rationale for the application of A. muciniphila to treat NASH and for the prevention of its progression to HCC.</p

    Table_2_Akkermansia muciniphila suppressing nonalcoholic steatohepatitis associated tumorigenesis through CXCR6+ natural killer T cells.xlsx

    No full text
    IntroductionGut microbiota plays a crucial role in the development and progression of nonalcoholic steatohepatitis (NASH) and associated hepatocellular carcinoma (HCC). Akkermansia muciniphila was reported to inhibit inflammation-associated cancer in the intestine. The anti-NASH ability of A. muciniphila has recently been found. Thus, we were to investigate whether supplementation of A. muciniphila could prevent NASH-associated HCC.MethodsIn a model we called STAM, male C57BL/6J mice were subcutaneously injected with 200 µg streptozotocin at 4 days after birth, and fed with high-fat diet at 4 weeks of age to induce NASH-associated HCC. Faeces from mice and patients with NASH-related HCC were collected for 16S rRNA sequencing. STAM mice were orally administered either saline or A. muciniphila twice a day starting at 4 or 10 weeks of age. The effects of A. muciniphila on the immune responses were also evaluated.ResultsPatients and mice with NASH-related HCC showed significantly reduced gut A. muciniphila in comparison to healthy controls. Administration of breast milk-isolated A. muciniphila (AM06) but not feces-isolated A. muciniphila (AM02) could improve NASH severity. Interestingly, breast milk-isolated A. muciniphila treatment suppressed the progression of NASH to HCC, accompanied with an increased hepatic CXCR6+ natural killer T (NKT) cell and decreased macrophage infiltration. The antitumor ability of A. muciniphila was not evident in NKT cell-deficient mice (CD1d-/- and CXCR6-/-). In vitro, A. muciniphila promoted the killing of hepG2 cells by NKT cells.DiscussionOur study will provide the rationale for the application of A. muciniphila to treat NASH and for the prevention of its progression to HCC.</p
    corecore