517 research outputs found

    Predicting the decline of ethnic civil war: Was gurr right and for the right reasons?

    Get PDF
    © The Author(s) 2017. Many scholars have detected a decrease of political violence, but the causes of this decline remain unclear. As a contribution to this debate, we revisit the controversy over trends in conflict after the end of the Cold War. While many made ominous predictions of surging ethnic warfare, Gurr presented evidence of a pacifying trend since the mid-1990s and predicted a further decline in ethnic conflict in an article on ‘the waning of ethnic war’. Leveraging more recent data on ethnic groups and their participation in ethnic civil wars, this study evaluates if Gurr was right about the decline of ethnic conflict, and if he was right for the right reasons. We assess whether an increase in governments’ accommodative policies toward ethnic groups can plausibly account for a decline in ethnic civil war. Our findings lend considerable support to an account of the pacifying trend that stresses the granting of group rights, regional autonomy, and inclusion in power-sharing, as well as democratization and peacekeeping

    Introduction: Forecasting in peace research

    Get PDF
    Prediction and forecasting have now fully reached peace and conflict research. We define forecasting as predictions about unrealized outcomes given model estimates from realized data, and predictions more generally as the assignment of probability distributions to realized or unrealized outcomes. Increasingly, scholars present within- and out-of-sample prediction results in their publications and sometimes even forecasts for unrealized, future outcomes. The articles in this special issue demonstrate the ability of current approaches to forecast events of interest and contributes to the formulation of best practices for forecasting within peace research. We highlight the role of forecasting for theory evaluation and as a bridge between academics and policymakers, summarize the contributions in the special issue, and provide some thoughts on how research on forecasting in peace research should proceed. We suggest some best practices, noting the importance of theory development, interpretability of models, replicability of results, and data collection

    Ascl2-Dependent Cell Dedifferentiation Drives Regeneration of Ablated Intestinal Stem Cells

    Get PDF
    Ablation of LGR5+ intestinal stem cells (ISCs) is associated with rapid restoration of the ISC compartment. Different intestinal crypt populations dedifferentiate to provide new ISCs, but the transcriptional and signaling trajectories that guide this process are unclear, and a large body of work suggests that quiescent “reserve” ISCs contribute to regeneration. By timing the interval between LGR5+ lineage tracing and lethal injury, we show that ISC regeneration is explained nearly completely by dedifferentiation, with contributions from absorptive and secretory progenitors. The ISC-restricted transcription factor ASCL2 confers measurable competitive advantage to resting ISCs and is essential to restore the ISC compartment. Regenerating cells re-express Ascl2 days before Lgr5, and single-cell RNA sequencing (scRNA-seq) analyses reveal transcriptional paths underlying dedifferentiation. ASCL2 target genes include the interleukin-11 (IL-11) receptor Il11ra1, and recombinant IL-11 enhances crypt cell regenerative potential. These findings reveal cell dedifferentiation as the principal means for ISC restoration and highlight an ASCL2-regulated signal that enables this adaptive response

    Visualization of Myelin Basic Protein (Mbp) T Cell Epitopes in Multiple Sclerosis Lesions Using a Monoclonal Antibody Specific for the Human Histocompatibility Leukocyte Antigen (Hla)-Dr2–Mbp 85–99 Complex

    Get PDF
    Susceptibility to multiple sclerosis (MS) is associated with the human histocompatibility leukocyte antigen (HLA)-DR2 haplotype, suggesting that major histocompatibility complex class II–restricted presentation of central nervous system–derived antigens is important in the disease process. Antibodies specific for defined HLA-DR2–peptide complexes may therefore be valuable tools for studying antigen presentation in MS. We have used phage display technology to select HLA-DR2–peptide-specific antibodies from HLA-DR2–transgenic mice immunized with HLA-DR2 molecules complexed with an immunodominant myelin basic protein (MBP) peptide (residues 85–99). Detailed characterization of one clone (MK16) demonstrated that both DR2 and the MBP peptide were required for recognition. Furthermore, MK16 labeled intra- and extracellular HLA-DR2–MBP peptide complexes when antigen-presenting cells (APCs) were pulsed with recombinant MBP. In addition, MK16 inhibited interleukin 2 secretion by two transfectants that expressed human MBP–specific T cell receptors. Analysis of the structural requirement for MK16 binding demonstrated that the two major HLA-DR2 anchor residues of MBP 85–99 and the COOH-terminal part of the peptide, in particular residues Val-96, Pro-98, and Arg-99, were important for binding. Based on these results, the antibody was used to determine if the HLA-DR2–MBP peptide complex is presented in MS lesions. The antibody stained APCs in MS lesions, in particular microglia/macrophages but also in some cases hypertrophic astrocytes. Staining of APCs was only observed in MS cases with the HLA-DR2 haplotype but not in cases that carried other haplotypes. These results demonstrate that HLA-DR2 molecules in MS lesions present a myelin-derived self-peptide and suggest that microglia/macrophages rather than astrocytes are the predominant APCs in these lesions

    Tritiated thymidine autoradiographic study on the influence of sensory and sympathetic innervation on periodontal wound healing in the rat

    Full text link
    Understanding of wound healing mechanisms is important in designing preventive and therapeutic approaches to inflammatory periodontal diseases, which are a major cause of dental morbidity. In this study, cell proliferation was assessed after an experimental gingival wound; this was preceded by either resection of 3 mm of the inferior alveolar nerve, total extirpation of the superior cervical ganglion, trauma to those structures or sham operations. At different times, animals were pulsed with 0.5 [mu] Ci/g body weight of tritiated thymidine; histological sections were processed for quantitative autoradiography of different compartments of the peridontium. Wounding led to a significant increase in cell proliferation in the epithelial layer, the fibroblast compartment and the periodontal ligament, but not in the alveolar crest compartment. Sympathetic denervation significantly enhanced this response in the epithelial layer, the fibroblast compartment and the alveolar crest, whereas sensory denervation only modified the response in the fibroblast layer. Thus it appears that sympathetic innervation plays an important role in the regulation of cell proliferation in the periodontium and that pharmacological modulation of sympathetic activity should be further studied as a therapeutic approach in periodontal disease.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/28886/1/0000722.pd

    Functional single-cell analysis of T-cell activation by supported lipid bilayer-tethered ligands on arrays of nanowells

    Get PDF
    Supported lipid bilayers are an important biomolecular tool for characterizing immunological synapses. Immobilized bilayers presenting tethered ligands on planar substrates have yielded both spatio-temporal and structural insights into how T cell receptors (TCRs) reorganize during the initial formation of synapses upon recognition of peptide antigens bound to major histocompatibility complex (MHC) molecules. The prototypical configuration of these assays, however, limits the extent to which the kinetics and structure of the supramolecular activation clusters of the synapse (that occur in seconds or minutes) can be related to subsequent complex cellular responses, such as cytokine secretion and proliferation, occurring over hours to days. Here we describe a new method that allows correlative measures of both attributes with single-cell resolution by using immobilized lipid bilayers and tethered ligands on the surface of dense arrays of subnanoliter wells. This modification allows each nanowell to function as an artificial antigen-presenting cell (APC), and the synapses formed upon contact can be imaged by fluorescence microscopy. We show that the lipid bilayers remain stable and mobile on the surface of the PDMS, and that modifying the ligands tethered to the bilayer alters the structure of the resulting synapses in expected ways. Finally, we demonstrate that this approach allows the subsequent characterization of secreted cytokines from the activated human T cell clones by microengraving in both antigen- and pan-specific manners. This new technique should allow detailed investigations on how biophysical and structural aspects of the synapse influence the activation of individual T cells and their complex functional responses.National Institute of Allergy and Infectious Diseases (U.S.) (5P01AI045757)National Cancer Institute (U.S.) (Cancer Center Support (Core) Grant P30-CA14051
    corecore