20 research outputs found

    The functions and regulatory pathways of S100A8/A9 and its receptors in cancers

    Get PDF
    Inflammation primarily influences the initiation, progression, and deterioration of many human diseases, and immune cells are the principal forces that modulate the balance of inflammation by generating cytokines and chemokines to maintain physiological homeostasis or accelerate disease development. S100A8/A9, a heterodimer protein mainly generated by neutrophils, triggers many signal transduction pathways to mediate microtubule constitution and pathogen defense, as well as intricate procedures of cancer growth, metastasis, drug resistance, and prognosis. Its paired receptors, such as receptor for advanced glycation ends (RAGEs) and toll-like receptor 4 (TLR4), also have roles and effects within tumor cells, mainly involved with mitogen-activated protein kinases (MAPKs), NF-κB, phosphoinositide 3-kinase (PI3K)/Akt, mammalian target of rapamycin (mTOR) and protein kinase C (PKC) activation. In the clinical setting, S100A8/A9 and its receptors can be used complementarily as efficient biomarkers for cancer diagnosis and treatment. This review comprehensively summarizes the biological functions of S100A8/A9 and its various receptors in tumor cells, in order to provide new insights and strategies targeting S100A8/A9 to promote novel diagnostic and therapeutic methods in cancers

    Cyclizing-berberine A35 induces G2/M arrest and apoptosis by activating YAP phosphorylation (Ser127)

    No full text
    Abstract Background A35 is a novel synthetic cyclizing-berberine recently patented as an antitumor compound. Based on its dual targeting topoisomerase (top) activity, A35 might overcome the resistance of single-target top inhibitors and has no cardiac toxicity for not targeting top2β. In this study we further explored the biological effects and mechanisms of A35. Methods Antitumor activity of A35 was evaluated by SRB and colony formation assay. G2/M phase arrest (especially M) and first damage of M-phase cells were investigated by flow cytometry, cytogenetic analysis, immunofluorescence, co-immunoprecipitation and WB. The key role of phospho-YAP (Ser127) in decreasing YAP nuclear localization, subsequent G2/M arrest and proliferation inhibition were explored by YAP1−/− cells, mutated Ser127 YAP construct (Ser127A) and TUNEL. Results G2/M arrest induced by A35 was independent of p53. M phase cells at low dose were firstly damaged and most damaged-cells accumulated in M phase, and that was a result of preferring targeting top2α by A35, as top2α is essential to push M phase into next phase, and targeting top2α induced cells arrested at M phase. A35 decreased YAP1 nuclear localization by activating YAP phosphorylation (Ser127) which subsequently regulated the transcription of YAP target genes associated with growth and cycle regulation to induce G2/M arrest and growth inhibition. Conclusions Our studies suggested the mechanism of G2/M arrest induced by A35 and a novel role of YAP1 (Ser127) in G2/M arrest. As a dual topoisomerase inhibitor characterized by no cardiac toxicity, A35 is a promising topoisomerase anticancer agent and worthy of further development in future

    The effects of monocular training on binocular functions in anisometropic amblyopia

    No full text
    Intensive monocular perceptual learning can improve visual acuity, contrast sensitivity, and vernier acuity in the amblyopic eye in adults with amblyopia. It is however not clear how much monocular training can enhance binocular visual functions. In the current study, we aimed to evaluate effects of monocular training on a variety of binocular functions. Nineteen anisometropic amblyopes (18.5 +/- 1.26 yrs, mean +/- s.e.) were trained in a grating contrast detection task near each individual's cutoff spatial frequency for 6-10 days (630 trials/day). Visual acuity, stereoacuity, monocular and binocular contrast sensitivity functions (CSF), binocular phase combination and binocular rivalry were tested before and after training. Although monocular training can improve visual acuity and contrast sensitivity and eye dominance of the amblyopic eye, the magnitudes of improvements did not correlate with each other; the impact of monocular training on binocular phase combination was not significant. The results strongly suggest that structured monocular and binocular training is needed to fully recover deficient visual functions in anisometropic amblyopia. (C) 2017 The Author(s). Published by Elsevier Ltd

    Synthesis and biological evaluation of 12-N-p-chlorobenzyl sophoridinol derivatives as a novel family of anticancer agents

    Get PDF
    Taking 12-N-p-chlorobenzyl sophoridinol 2 as a lead, a series of novel sophoridinic derivatives with various 3′-substituents at the 11–side chain were synthesized and evaluated for their anticancer activity from sophoridine (1), a natural antitumor medicine. Among them, the sophoridinic ketones 5a–b, alkenes 7a–b and sophoridinic amines 14a–b displayed reasonable antiproliferative activity with IC50 values ranging from 3.8 to 5.4 μmol/L. Especially, compounds 5a and 7b exhibited an equipotency in both adriamycin (AMD)-susceptible and resistant MCF-7 breast carcinoma cells, indicating a different mechanism from AMD. The primary mechanism of action of 5a was to arrest the cell cycle at the G0/G1 phase, consistent with that of parent compound 1. Thus, we consider 12-chlorobenzyl sophoridinic derivatives with a tricyclic scaffold to be a new class of promising antitumor agents with an advantage of inhibiting drug-resistant cancer cells

    ER-phagy in the Occurrence and Development of Cancer

    No full text
    As an organelle, the endoplasmic reticulum (ER) is closely related to protein synthesis and modification. When physiological or pathological stimuli induce disorders of ER function, misfolded proteins trigger ER-phagy, which is beneficial for restoring cell homeostasis or promoting cell apoptosis. As a double-edged sword, ER-phagy actively participates in various stages of development and progression in tumor cells, regulating tumorigenesis and maintaining tumor cell homeostasis. Through the unfolded protein response (UPR), the B cell lymphoma 2 (BCL-2) protein family, the Caspase signaling pathway, and others, ER-phagy plays an initiating role in tumor occurrence, migration, stemness, and proliferation. At the same time, many vital proteins strongly associated with ER-phagy, such as family with sequence similarity 134 member B (FAM134B), translocation protein SEC62 (SEC62), and C/EBP-homologous protein (CHOP), can produce a marked effect in many complex environments, which ultimately lead to entirely different tumor fates. Our article comprehensively focused on introducing the relationship and interaction between ER-phagy and cancers, as well as their molecular mechanism and regulatory pathways. Via these analyses, we tried to clarify the possibility of ER-phagy as a potential target for cancer therapy and provide ideas for further research

    Design, synthesis and biological evaluation of 2-((4-sulfamoylphenyl)amino)-pyrrolo[2,3-d]pyrimidine derivatives as CDK inhibitors

    No full text
    AbstractTo explore the potential use of CDK inhibitors in pancreatic ductal adenocarcinoma (PDAC) therapy, a series of novel 2-((4-sulfamoylphenyl)amino)-pyrrolo[2,3-d]pyrimidine derivatives was designed, synthesised, and investigated for inhibition on both CDK kinase activity and cellular proliferation of pancreatic cancer. Most of new sulphonamide-containing derivatives demonstrated strong inhibitory activity on CDK9 and obvious anti-proliferative activity in cell culture. Moreover, two new compounds suppressed cell proliferation of multiple human pancreatic cancer cell lines. The most potent compound 2g inhibited cancer cell proliferation by blocking Rb phosphorylation and induced apoptosis via downregulation of CDK9 downstream proteins Mcl-1 and c-Myc in MIA PaCa-2 cells. CDK9 knockdown experiment suggests its anti-proliferative activity is mainly mediated by CDK9. Additionally, 2g displayed moderate tumour inhibition effect in AsPC-1 derived xenograft mice model. Altogether, this study provided a new start for further optimisation to develop potential CDK inhibitor candidates for PDAC treatment by alone or combination use
    corecore