18,642 research outputs found

    Topological Spin Texture in a Quantum Anomalous Hall Insulator

    Get PDF
    The quantum anomalous Hall (QAH) effect has been recently discovered in experiment using thin-film topological insulator with ferromagnetic ordering and strong spin-orbit coupling. Here we investigate the spin degree of freedom of a QAH insulator and uncover a fundamental phenomenon that the edge states exhibit topologically stable spin texture in the boundary when a chiral-like symmetry is present. This result shows that edge states are chiral in both the orbital and spin degrees of freedom, and the chiral edge spin texture corresponds to the bulk topological states of the QAH insulator. We also study the potential applications of the edge spin texture in designing topological-state-based spin devices which might be applicable to future spintronic technologies.Comment: 5 pages manuscript, 8+ pages supplementary information, 8 figures; published versio

    Quantum Anomalous Hall Effect with Cold Atoms Trapped in a Square Lattice

    Get PDF
    We propose an experimental scheme to realize and detect the quantum anomalous Hall effect in an anisotropic square optical lattice which can be generated from available experimental set-ups of double-well lattices with minor modifications. A periodic gauge potential induced by atom-light interaction is introduced to give a Peierls phase for the nearest-neighbor site hopping. The quantized anomalous Hall conductivity is investigated by calculating the Chern number as well as the chiral gapless edge states of our system. Furthermore, we show in detail the feasability for its experimental detection through light Bragg scattering of the edge and bulk states with which one can determine the topological phase transition from usual insulating phase to quantum anomalous Hall phase.Comment: 5 pages, 3 figures, to appear in Phys. Rev.

    Scattering Equations, Twistor-string Formulas and Double-soft Limits in Four Dimensions

    Get PDF
    We study scattering equations and formulas for tree amplitudes of various theories in four dimensions, in terms of spinor helicity variables and on-shell superspace for supersymmetric theories. As originally obtained in Witten's twistor string theory and other twistor-string models, the equations can take either polynomial or rational forms, and we clarify the simple relation between them. We present new, four-dimensional formulas for all tree amplitudes in the non-linear sigma model, a special Galileon theory and the maximally supersymmetric completion of the Dirac-Born-Infeld theory. Furthermore, we apply the formulas to study various double-soft theorems in these theories, including the emissions of a pair of soft photons, fermions and scalars for super-amplitudes in super-DBI theory.Comment: 22 pages, 2 tables; v2: ref added, minor typos fixe

    Connection between closeness of classical orbits and the factorization of radial Schr\"{o}dinger equation

    Full text link
    It was shown that the Runge-Lenz vector for a hydrogen atom is equivalent to the raising and lowering operators derived from the factorization of radial Schr\"{o}dinger equation. Similar situation exists for an isotropic harmonic oscillator. It seems that there may exist intimate relation between the closeness of classical orbits and the factorization of radial Schr\"{o}dinger equation. Some discussion was made about the factorization of a 1D Schr\"{o}dinger equation.Comment: 14 pages, no figure
    corecore