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Quantum anomalous Hall effect with cold atoms trapped in a square lattice
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We propose an experimental scheme to realize the quantum anomalous Hall effect in an anisotropic square
optical lattice which can be generated from available experimental setups of double-well lattices with minor
modifications. A periodic gauge potential induced by atom-light interaction is introduced to give a Peierls phase
for the nearest-neighbor site hopping. The quantized anomalous Hall conductivity is investigated by calculating
the Chern number as well as the chiral gapless edge states of our system. Furthermore, we show in detail
the feasability for its experimental detection through light Bragg scattering of the edge and bulk states with
which one can determine the topological phase transition from usual insulating phase to quantum anomalous
Hall phase.
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I. INTRODUCTION

Twenty years ago, Haldane proposed a toy model in
the honeycomb lattice to illustrate the quantum anomalous
Hall effect (QAHE) [1], in which a complex second-nearest-
neighbor hopping term t2e

iφ drives the system into the
topologically insulating state. Different from the conventional
quantum Hall effect (QHE) [2], Landau levels are not
necessary for QAHE, while in both the QHE and QAHE
systems, the time-reversal symmetry (TRS) is broken. The
quantized Hall conductivity can be explained with Laughlin’s
gauge-invariance argument [3] and by Halperin’s edge-state
picture [4], which has a deep topological reason as the first
Chern class of a U(1) principal fiber bundle on a torus [5].
Considering the topological nontriviality and the absence of
magnetic field of the QAHE, realizing experimentally this
new state of matter in its cleanest form is of fundamental
importance in the study of new materials such as topological
insulators.

Unfortunately, Haldane’s model cannot be realized in
the recently discovered graphene system since the required
staggered magnetic flux in the model is extremely hard
to achieve. A recent proposal predicts the QAHE in the
Hg1−xMnxTe quantum wells [6] by doping Mn atoms in the
quantum spin Hall system of the HgTe quantum well to break
TRS [7–9]. QAHE is reachable within a time range much
smaller than the relaxation time of Mn spin polarization, which
is about 10−4 s, while so far the experimental study of this
effect is not available. On the other hand, the technology of
ultracold atoms in optical lattices allows in a controllable
fashion the unique access to the study of condensed-matter
physics. An artificial version of the staggered magnetic field
(Berry curvature) with hexagonal symmetry is considered to
obtain Haldane’s model for cold atoms trapped in a honeycomb
optical lattice [10]. While a periodic Berry curvature can be
readily obtained by coupling atomic internal states to standing
waves of laser fields [11–15], the experimental realization
of the staggered magnetic field with hexagonal symmetry
remains a challenge. Furthermore, Wu shows QAHE can be
reached with the p-orbital band in the honeycomb optical
lattice by applying a technique developed by S. Chu’s

group [16] of rotating each lattice site around its own
center [17].

In this work, we propose a distinct realization of QAHE
in a two-dimensional (2D) anisotropic square optical lattice,
which can be realized based on the double-well experiments
performed at NIST [18], superposed with a periodic gauge
potential which is also experimentally accessible. The experi-
mental detection of quantum anomalous Hall (QAH) states is
also proposed and investigated in detail through light Bragg
scattering.

II. THE MODEL

We consider an anisotropic 2D square optical lattice de-
picted in Fig. 1(A) filled with fermions (e.g., 6Li, 40K), whose
optical potential is expressed as Vlatt(r) = −V0(cos2 k0x +
cos2 k0y) − V0 cos2[ k0

2 (x + y) + π
2 ]. This potential can be

generated from the available experimental setup of the double-
well lattice illustrated in Fig. 1(b) of Ref. [18] by placing an
additional polarizing beam splitter (PBS) before the mirror
reflector M3 and suitably adjusting the phase difference among
different optical paths. The first term of the potential is from the
light component with the in-plane (x-y) polarization which is
deflected by the PBS and then reflected back by M3, while the
second term is from the light component with the out-of-plane
(z) polarization which passes the PBS without reflection. No
interference exists between these two components. This optical
potential has a structure of two sublattices A and B. The
potential minimum VA at site A is higher than VB at site B as
VA − VB = V0. The anisotropic potential at site A has different
frequencies along the directions of ê1,2 = 1√

2
(êx ± êy) as

ωA
1 = (V0k

2
0)1/2/m1/2 and ωA

2 = √
2ωA

1 , and those at site B are
ωB

1 = √
3ωA

1 and ωB
2 = ωA

2 = √
2ωA

1 , respectively. The local
orbital is described by 2D harmonic oscillator eigenstate ψA,B

n1n2

with the eigenvalues

EA
n1,n2

=
(

nA
1 + 1

2

)
h̄ωA

1 +
(

nA
2 + 1

2

)
h̄ωA

2 ,

(1)

EB
n1,n2

=
(

nB
1 + 1

2

)
h̄ωB

1 +
(

nB
2 + 1

2

)
h̄ωB

2 − V0.
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FIG. 1. (Color online) (A) Fermions trapped in a 2D anisotropic
square optical lattice. Due to the different on-site trapping frequen-
cies, the square lattice is divided into two sublattices A and B.
(B) The local orbitals are in the �e1 and �e2 directions.

In what follows we shall consider V0 taking the value of
V0 = (3

√
3 − 1)2Er/2 − 4M , with M satisfying M � Er and

Er = h̄2k2
0/2m the recoil energy. In this case, the s orbital at

the B sites is the lowest one, while the s orbital at the A sites
is nearly degenerate with the p orbital at the B sites along the
ê1 direction with the energy difference of EB

1,0 − EA
00 ≈ 2M .

Specifically, if M = 0, we have EB
1,0 − EA

00 = 0. For con-
venience, we denote two such nearly degenerate states by
ψa = ψA

0,0 and ψb = ψB
1,0, respectively, which consist of a

pseudospin-1/2 subspace. We shall focus on the hybridized
bands between ψa and ψb intermediated by the intersite
hopping but neglect the hybridization between ψa,b and the
lowest s orbital in the B sites since its onsite energy is far
separated from those of ψa,b in the case of large trapping
frequencies for the lattice [19].

To break TR symmetry, we introduce a periodic adiabatic
gauge potential in the simple form A(r) = h̄A0 sin[k0(y −
x)]�ey , with A0 a constant, which can be generated by
coupling atoms to two opposite-travelling standing-wave laser
beams with Rabi-frequencies �1 = �0 sin[k0(y − x)/2 +
π/4]e−iA0y,�2 = �0 cos[k0(y − x)/2 + π/4]eiA0y [12–14].
Note that the gauge field can lead to an additional contribution
|A|2/2m without the square lattice symmetry [20], which,
however, will not distort the present square lattice. This is
because, first of all, the term |A|2/2m is zero at all square
lattice sites. Second, the contributed potential of this term is
along the �e2 direction and leads to the same correction to ω

A,B
2 .

Therefore, we still have ωA
2 = ωB

2 and the properties of ψa,b

are unchanged. This is a key difference from the situation in
a honeycomb lattice system, where a gauge potential with
hexagonal symmetry is required to avoid the distortion of
original honeycomb lattice [10,20]. The simple form of gauge
potential represents here a feasible scheme in the experimental
realization.

The periodic gauge potential gives rise to a Peierls
phase for the hopping coefficients obtained by exp(iφri

L ) =
exp(i

∫ ri+L
ri

A · dr/h̄), where the integral is along the hopping
path from the site ri to site ri + L. Taking into account
the hopping between both the nearest and second-nearest
neighbor sites, we obtain the Hamiltonian in the tight-binding
form H = H1 + H2 + Hz, with Hz = M

∑
ri

[C†
b(ri)Cb(ri) −

C
†
a(ri)Ca(ri)], and

H1 = −
⎡
⎣∑

ri

∑
j=1,2

tabe
iφ

ri
Sj Ĉ†

a(ri)Ĉb(ri + Sj ) + H.c.

⎤
⎦

+
⎡
⎣∑

ri

∑
j=3,4

tabe
iφ

ri
Sj Ĉ†

a(ri)Ĉb(ri + Sj ) + H.c.

⎤
⎦ ,

(2)

H2 = −
∑

ri

∑
µ=a,b

⎡
⎣ ∑

j=1,3

tµ1e
iφ

ri
Rj Ĉ†

µ(ri)Ĉµ(ri + Rj )

+
∑
j=2,4

tµ2e
iφ

ri
Rj Ĉ†

µ(ri)Ĉµ(ri + Rj )

⎤
⎦ ,

where Ĉµ(ri) is the annihilation operator on site ri in
sublattices A (for µ = a) and B (for µ = b), the vectors
S1(−S3) = (a, 0), S2(−S4) = (0, a), R1(−R3) = (a, a), and
R2(−R4) = (−a, a), with a = π/k0 the lattice constant. It is
easy to check that the Peierls phase φ

ri

Rj
= φ

ri

S1,3
= 0, while

φ
ri

S2,4
= φ0 (or φ

ri

S2,4
= −φ0), with φ0 = √

2A0/k0 when the ri

site belongs to sublattice A (or sublattice B). From the
symmetry of the wave functions ψa,b we know the hopping
coefficients satisfy ta1, ta2, tb2, tab > 0; tb1 < 0; ta1 �= ta2; and
tb1 �= tb2 [Fig. 1(B)]. Besides, since the hopping constants
decay exponentially with distance, tab is typically several times
bigger in magnitude than taj and tbj (j = 1, 2). Nevertheless,
such differences will not affect the topological phase transition.
Finally, noting ψa,b have the same spatial distribution in the
�e2 direction, we can expect that ta2 ≈ tb2 or |ta2 − tb2| �
ta1 − tb1.

It is convenient to transform the tight-binding
Hamiltonian into momentum space, say, let Ĉa,b(rj ) =

1√
N

∑
k eik·rj Ĉa,b(k), we obtain a Hamiltonian in the matrix

form H = ∑
k Ĉ†(k)H(k)Ĉ(k), with Ĉ(k) = [Ĉa(k), Ĉb(k)]T

and (neglecting the constant terms)

H(k) = λx(k)σx + λy(k)σy + λz(k)σz. (3)

Here λx = 2tab sin φ0 sin(kya), λy = 2tab[sin(kxa) + cos φ0

sin(kya)], and λz = −M − �0 cos(kxa) cos(kya) −
2t̃1 sin(kxa) sin(kya), with t̃1 = (ta1 − tb1 + tb2 − ta2)/2, �0 =
ta1 − tb1 + ta2 − tb2. As long as φ0 �= nπ , the TR symmetry
of the system is broken. This Hamiltonian leads to two

energy bands with the spectra given by E± = ±
√∑

i λ
2
i (k).

One can see that when φ0 �= nπ , the band gap is opened
if at the two independent Dirac points λz(Kc) �= 0, with
Kc = (0, 0), (0, π ). Therefore, when M �= ±�0 the system is
gapped in the bulk.

When the Fermi energy is inside the band gap, the longi-
tudinal conductivity is zero. The anomalous Hall conductivity
(AHC) can be calculated by

σH
xy = C1/h̄, (4)

where C1 = (4π )−1
∫

FBZ dkxdkyn · ∂kx
n × ∂ky

n, with n(k) =
(λx, λy, λz)/|�λ(k)|, is the first Chern number, a quantized
topological invariant defined on the first Brillouin zone (FBZ).
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FIG. 2. (Color online) Gapped bulk states (black lines) and
gapless edge states [straight blue dashed lines in panels (a) and (c)
and straight red solid lines in panels (b) and (d), respectively] on the
boundaries x = 0 (a, c) and x = L (b, d). Parameters in panels (a) and
(b) are M = 0, φ0 = π/2, and in (c) and (d) are M = 0, φ0 = −π/2.
The energy spectra are plotted in units of 2.5�0. The chirality of
edge states indicates the Chern number C1 = +1 for φ0 = π/2 and
C1 = −1 for φ0 = −π/2.

Actually, one can construct a mapping degree between FBZ
torus and spherical surface S2, F : S1 × S1 �→ S2, which gives
the Chern number C1 = m ∈ Z, with m the number of times
the mapping covers the S2 surface. By a straightforward
calculation we can show that in the case where −�0 < M <

�0, meaning the effective masses of the Dirac Hamiltonian
around two independent Dirac points are of opposite sign,
the Chern number C1 = +1 when 0 < φ0 < π and C1 = +1
when −π < φ0 < 0. In all other cases we have C1 = 0.
The quantized AHC can support topological stable gapless
edge states on the boundaries of the system. To study the
edge modes, we consider a hard-wall boundary [21] along
the x axis at x = 0 and x = L. The momentum kx is no
longer a good quantum number, and we shall transform the
terms with kx in the Hamiltonian back to position space. For
convenience we envisage first the case φ0 = π/2 and obtain
that [H = ∑

ky ,xi
H(ky, xi)]

H =
∑
ky ,xi

[MĈ
†
ky ,xi

Ĉky ,xi
+ AĈ

†
ky ,xi

Ĉky ,xi+1

+A†Ĉ†
ky ,xi+1Ĉky ,xi

], (5)

where

M = 2tab sin kyaσx − Mσz, (6)

and

A = −itabσy −
∑
j=1,2

taj − tbj

2
cos kyaσz

+ i

2
(ta1 − tb1 + tb2 − tb1) sin kyaσz. (7)

Note that the edge modes are generally exponentially localized
on the boundary [22]. Denoting by 
+(ky, xi) and 
−(ky, xi)

the edge states on the boundaries x = 0 and x = L, respec-
tively, one can verify that they take the form


±(ky, xi) = uky
(y)√
N±

{[ξ (±)
1 ]xi/a − [ξ (±)

2 ]xi/a}ψ±, (8)

where the complex variables ξ±
1,2 are obtained by

ξ−
1,2 = [

M ±
√

M2 + 4(tab − it̃1 sin kya)2 − �2
0 cos2 kya

]
× (2tab − 2t̃2 cos kya − i2t̃1 sin kya)−1

and ξ+
1,2 = 1/ξ−

1,2, the spinor ψ± satisfies σxψ
± = ±ψ±,

uky
(y) is the Bloch wave function along the y axis, and N±

the normalization factor. The chirality of the edge modes can
be found from their spectra E±

ky
= ±2tab sin kya, respectively

associated with group velocities vF ≈ ±2atab/h̄ around Dirac
point. Besides, the exponential decay of the edge states on
boundaries requires that |ξ+

1,2| < 1 and ξ−
1,2 > 1 [22]. At the

Dirac point ky = 0, one can see that such inequalities lead to
−�0 < M < �0, which is consistent with the condition for
nonzero Chern numbers obtained before. Figure 2 depicts the
energy spectra in different situations.

III. DETECTION OF THE TOPOLOGICAL
PHASE TRANSITION

Next we proceed to study the detection of the edge and bulk
states with light Bragg scattering, with which one can detect
the topological phase transition. In the Bragg spectroscopy, we
shine two lasers on the lattice system, with the wave vectors
k1, k2 and frequencies ω1,2 = k1,2c, respectively [Fig. 3(a)].
Note that only the momentum ky is still a good quantum
number and we let q = k1 − k2 = qêy and denote ω = ω1 −
ω2. The atom-light interacting Hamiltonian reads

Hint =
∑

k1y ,k2y

�eiq·rĈ†
µ(ky + q)Ĉν(ky) + H.c., (9)

where � is an effective Rabi frequency of the two-photon
process in light Bragg scattering and the indices µ and ν

FIG. 3. (Color online) Schematic of light Bragg scattering
(a) and dynamical structure for the cases in which the system is
in the topological phase (b, c) and in the insulating phase (d).
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represent the edge and bulk states, respectively. The light
Bragg scattering directly measures the dynamical structure
factor [23]:

S(q, ω) =
∑

ky1 ,ky2

{
1 − f

[
E

(f )
ky2

]}
f

[
E

(i)
ky1

]

×∣∣〈
(f )
ky2

∣∣Hint

∣∣
(i)
ky1

〉∣∣2
δ
[
h̄ω − E

(f )
ky2

+ E
(i)
ky1

]
, (10)

with |
(i)
ky1

〉 (|
(f )
ky2

〉) the initial (final) atomic state before (after)
scattering and f (E) the Fermi distribution function. For the
topological insulating phase, for example, when φ0 = π/2 and
M = 0, since the edge states are localized on the boundaries,
we may consider two basic situations for the Bragg scattering:
First, we shine the two lasers on one boundary (on x = 0 or x =
L) of the system; second, we shine them on the whole lattice
system including both boundaries. For the former case, only
edge states on the boundary shined with lasers can be scattered.
When ω < �0, the initial edge states below Fermi energy
will be scattered to edge states above Fermi energy, while for
ω > �0, part of the initial edge states can be pumped to upper
band bulk states after scattering. Note that the edge state is an
exponential decaying function in the x direction, with decaying
property dependent on the momentum ky1 , while the bulk states
are standing waves along the x axis. Therefore, the scattering
process with an edge state pumped to bulk states actually
includes many channels characterized by different values of
kx2 of the final bulk states, and the effective Rabi frequency
for such scattering processes is generally a function of ky1 , kx2 ,
denoted by �̃(ky1 , kx2 ). Nevertheless, in the practical case, we
require that ω be slightly above �0, and only the states with
momenta near zero need to be considered. In this way we
can expect that �̃ does not change considerably from �̃0 ≡
�̃(0, 0) and can be expanded around this value. Specifically, in
a continuum limit one finds that the exponential decay property
of the edge state (localized on x = 0) given in Eq. (8) can be
approximated as 
+ ∼ e−q0x , with q0 = �0

2atab
, with which we

obtain the effective Rabi frequency �̃(kx, ky) ≈ �̃0/(q2
0 + k2

x).
Bearing these results in mind, we can verify that for |q| � q0

the dynamical structure takes the general form

S(q, ω) ≈ (|q| + ky0 )�2δ(ω ∓ vF q)

+ �0�̃
2
0

2t2
aba

2

1 + 3h̄ω̃/(2q0atab)

[1 + h̄ω̃/(q0atab)]2

×
(

π

2
+ sin−1 α1/2|q − q0|√

h̄ω̃

)
�(ω − ωc), (11)

where ω̃ = ω − �0/2h̄ − 2|q|atab/h̄, ωc = (�0/2 +
2|q|atab)/h̄, α = 2�−1

0 t2
aba

2, and the step function
�(x) = 1(0) for x > 0 (x < 0). For q < q0, the S(q, ω)

is obtained in the same form, only with ωc changed to be
ωc = (�0 + 2a2t2

abq
2/�0)/h̄ in Eq. (11). The first term in

S(q, ω) is contributed by the scattering processes with edge
states pumped to edge states on the boundary x = 0 (for “−”)
or x = L (for “+”). The peaks at ω = ±qvF obtained by
this term reflect the chirality of the edge modes [Figs. 3(b)
and 3(c), blue solid lines]. From the second term in S(q, ω)
we see that the scattering processes with initial edge states
pumped to the upper band bulk states approximately give rise
to a finite contribution [Figs. 3(b) and 3(c), red dashed lines].
For the latter situation the lasers are shined on the whole
lattice, and the cross-scattering process with edge states on
one boundary scattered to edge states on another boundary
will happen. We can show that the cross scattering leads to
an additional contribution �2

h̄vF
�(ω ∓ vF q) to the dynamical

structure [Fig. 3(c), blue dotted line].
Finally, when |M| � �0, the Chern number becomes zero

and in this case no edge state can survive on the boundaries.
Specifically, for the case M = −�0 (and φ0 = π/2), the bulk
gap is closed (� = 0 at the Fermi point k = 0) and the particles
can be described as massless Fermions [24], while for M =
−2�0, the bulk gap is given by � = 2�0. We respectively
obtain the dynamical structure for the two cases S(q, ω) =

π�2

16a2t2
ab

h̄2ω2−2a2t2
abq

2√
h̄2ω2−4a2t2

abq
2
�(ω − ωc1 ) and S(q, ω) = π�0�

2

4a2t2
ab

�(ω −
ωc2 ), with ωc1 = 2atabq/h̄ and ωc2 = (2�0 + q2a2t2

ab/�0)/h̄.
The results are plotted with blue solid line (for � = 0) and red
dashed line (for � = 2�0) in Fig. 3(d). Based on the results
of light Bragg scattering in different situations, we clearly see
that the Bragg spectroscopy provides a direct way to observe
the edge states and bulk states.

IV. CONCLUSION

In conclusion, we proposed a scheme to realize the QAHE
in an anisotropic square optical lattice based on the experimen-
tal setup of the double-well lattice at NIST. We have studied
in detail the experimental detection of the edge and bulk states
through light Bragg scattering, with which one can determine
the topological phase transition from usual insulating phase to
QAH phase.
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