21,324 research outputs found

    Data-driven Efficient Solvers and Predictions of Conformational Transitions for Langevin Dynamics on Manifold in High Dimensions

    Full text link
    We work on dynamic problems with collected data {xi}\{\mathsf{x}_i\} that distributed on a manifold M⊂Rp\mathcal{M}\subset\mathbb{R}^p. Through the diffusion map, we first learn the reaction coordinates {yi}⊂N\{\mathsf{y}_i\}\subset \mathcal{N} where N\mathcal{N} is a manifold isometrically embedded into an Euclidean space Rℓ\mathbb{R}^\ell for ℓ≪p\ell \ll p. The reaction coordinates enable us to obtain an efficient approximation for the dynamics described by a Fokker-Planck equation on the manifold N\mathcal{N}. By using the reaction coordinates, we propose an implementable, unconditionally stable, data-driven upwind scheme which automatically incorporates the manifold structure of N\mathcal{N}. Furthermore, we provide a weighted L2L^2 convergence analysis of the upwind scheme to the Fokker-Planck equation. The proposed upwind scheme leads to a Markov chain with transition probability between the nearest neighbor points. We can benefit from such property to directly conduct manifold-related computations such as finding the optimal coarse-grained network and the minimal energy path that represents chemical reactions or conformational changes. To establish the Fokker-Planck equation, we need to acquire information about the equilibrium potential of the physical system on N\mathcal{N}. Hence, we apply a Gaussian Process regression algorithm to generate equilibrium potential for a new physical system with new parameters. Combining with the proposed upwind scheme, we can calculate the trajectory of the Fokker-Planck equation on N\mathcal{N} based on the generated equilibrium potential. Finally, we develop an algorithm to pullback the trajectory to the original high dimensional space as a generative data for the new physical system.Comment: 59 pages, 16 figure

    Experimentally reducing the quantum measurement back-action in work distributions by a collective measurement

    Full text link
    In quantum thermodynamics, the standard approach to estimate work fluctuations in unitary processes is based on two projective measurements, one performed at the beginning of the process and one at the end. The first measurement destroys any initial coherence in the energy basis, thus preventing later interference effects. In order to decrease this back-action, a scheme based on collective measurements has been proposed in~[PRL 118, 070601 (2017)]. Here, we report its experimental implementation in an optical system. The experiment consists of a deterministic collective measurement on identically prepared two qubits, encoded in the polarisation and path degree of a single photon. The standard two projective measurement approach is also experimentally realized for comparison. Our results show the potential of collective schemes to decrease the back-action of projective measurements, and capture subtle effects arising from quantum coherence.Comment: 9 pages, 4 figure

    Building quantum neural networks based on swap test

    Get PDF
    Artificial neural network, consisting of many neurons in different layers, is an important method to simulate humain brain. Usually, one neuron has two operations: one is linear, the other is nonlinear. The linear operation is inner product and the nonlinear operation is represented by an activation function. In this work, we introduce a kind of quantum neuron whose inputs and outputs are quantum states. The inner product and activation operator of the quantum neurons can be realized by quantum circuits. Based on the quantum neuron, we propose a model of quantum neural network in which the weights between neurons are all quantum states. We also construct a quantum circuit to realize this quantum neural network model. A learning algorithm is proposed meanwhile. We show the validity of learning algorithm theoretically and demonstrate the potential of the quantum neural network numerically.Comment: 10 pages, 13 figure

    Orientation and Motion of Water Molecules at Air/Water Interface

    Full text link
    Analysis of SFG vibrational spectra of OH stretching bands in four experimental configurations shows that orientational motion of water molecule at air/water interface is libratory within a limited angular range. This picture is significantly different from the previous conclusion that the interfacial water molecule orientation varies over a broad range within the vibrational relaxation time, the only direct experimental evidence for ultrafast and broad orientational motion of a liquid interface by Wei et al. [Phys. Rev. Lett. 86, 4799, (2001)] using single SFG experimental configuration

    Rapidity bin multiplicity correlations from a multi-phase transport model

    Full text link
    The central-arbitrary bin and forward-backward bin multiplicity correlation patterns for Au+Au collisions at sNN\sqrt{s_{NN}} = 7.7−62.47.7-62.4 GeV are investigated within a multi-phase transport (AMPT) model. An interesting observation is that for sNN<19.6\sqrt{s_{NN}} <19.6 GeV Au+Au collisions, these two correlation patterns both have an increase with the pseudorapidity gap, while for sNN>19.6\sqrt{s_{NN}} >19.6 GeV Au+Au collisions, they decrease. We mainly discuss the influence of different evolution stages of collision system on the central-arbitrary bin correlations, such as the initial conditions, partonic scatterings, hadronization scheme and hadronic scatterings. Our results show that the central-arbitrary bin multiplicity correlations have different responses to partonic phase and hadronic phase, which can be suggested as a good probe to explore the dynamical evolution mechanism of the hot dense matter in high-energy heavy-ion collisions.Comment: 7pages, 6 figures, accepted for publication in EPJ

    Deterministic realization of collective measurements via photonic quantum walks

    Full text link
    Collective measurements on identically prepared quantum systems can extract more information than local measurements, thereby enhancing information-processing efficiency. Although this nonclassical phenomenon has been known for two decades, it has remained a challenging task to demonstrate the advantage of collective measurements in experiments. Here we introduce a general recipe for performing deterministic collective measurements on two identically prepared qubits based on quantum walks. Using photonic quantum walks, we realize experimentally an optimized collective measurement with fidelity 0.9946 without post selection. As an application, we achieve the highest tomographic efficiency in qubit state tomography to date. Our work offers an effective recipe for beating the precision limit of local measurements in quantum state tomography and metrology. In addition, our study opens an avenue for harvesting the power of collective measurements in quantum information processing and for exploring the intriguing physics behind this power.Comment: Close to the published versio
    • …
    corecore