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An artificial neural network, consisting of many neurons in different layers, is an important method to simulate
the human brain. Usually, one neuron has two operations: one is linear, the other is nonlinear. The linear
operation is the inner product and the nonlinear operation is represented by an activation function. In this work,
we introduce a kind of quantum neuron whose inputs and outputs are quantum states. The inner product and
activation operator of the quantum neurons can be realized by quantum circuits. Based on the quantum neuron,
we propose a model of a quantum neural network in which the weights between neurons are all quantum states.
We also construct a quantum circuit to realize this quantum neural network model. A learning algorithm is
proposed meanwhile. We show the validity of the learning algorithm theoretically and demonstrate the potential
of the quantum neural network numerically.
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I. INTRODUCTION

Artificial neural networks can be traced back to the
McCulloch-Pitts (M-P) neurons proposed in 1943 [1]. Based
on M-P neurons, Rosenblatt in 1957 proposed the percep-
tron model with a learning algorithm [2]. So far, artificial
neural networks have had certain theoretical bases [3,4]
and extensive practical applications ranging from modeling,
classification, and pattern recognition to multivariate data
analysis [5,6].

The quantum neural network, proposed by Kak [7] in
1995, is a class of neural network that combines quantum
information theory and artificial neural networks. Different
models related to quantum neural networks have been devel-
oped [8–16]. Among these models, Ref. [9] is a perceptron
model with quantum input, quantum output, and weights
represented by operators, in which the concrete construction
is not explained; Ref. [15] uses quantum computing to achieve
the potential acceleration of classical neural networks, and
Ref. [16] is based on the actual physical device to construct
an analog classical neural network. However, there is still no
uniform standard for the rigorous definition of quantum neural
networks.

Recently, Ref. [17] introduced a strategy for using quantum
phase estimation to get the information for the inner product
of two quantum states. Inspired by this work, we introduce a
definition of a quantum neuron with quantum states as input
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states, weights, and a single-particle state as the output state.
Accordingly we propose a quantum neural network which can
be represented by quantum circuits. Besides, through theoret-
ical analysis and the numerical experiment, we demonstrate
the validity of the learning algorithm.

Our starting point is to assume that there is a large number
of quantum states, each of which is labeled by a quantum state.
Given these data as the training set, our goal is to predict
the label of an unknown input state. It is convenient for our
proposed quantum neurons to process quantum data directly.
And it does not cost the classical computing resources to
perform trained quantum neural networks. If using classical
neural networks, one may need the method of quantum-state
tomography to reconstruct the quantum data [18], which is a
highly complex task itself.

This proposed neuron adapts to different kinds of data
flexibly. When quantum states as the quantum data are labeled
by real numbers rather than quantum states, we can slightly
modify the measured strategy to realize classical outputs.
Things get more complicated when both data and labels are
classical. If using this proposed neuron we need to consider
the state preparation problem, which requires controlling the
amplitude of the desired quantum state to realize effectiveness
[19,20]. A method that makes state preparation simple is to
limit the structure of the data [21], in which data are limited
to vectors with binary value components.

The paper is organized as follows. At the end of this
section we briefly state the notations used in this paper. In
Sec. II, we describe the swap test and its quantum circuit.
In Sec. III, we construct a quantum neuron according to our
proposed definition, and then we analyze the property of this
proposed quantum neuron. The proof process is described
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FIG. 1. Quantum circuit to prepare |φr〉.

in Appendix A. In Sec. IV, based on the construction of a
quantum neuron we construct a kind of feedforward neural
network and a quantum circuit model representing the specific
quantum neural network. We give quantitative estimations of
success probability and fidelity theoretically. Some details are
presented in Appendix B. We describe the training process
of the quantum neural network in Sec. V. And in Sec. VI
we present an experiment for numerical simulation. At last
in Sec. VII, we draw the conclusions of this paper.

Notation. We use capital italic roman letters, A, B, . . ., for
matrices, lower case italic roman letters, x, y, . . ., for column
vectors, and Greek letters α, β, . . . for scalars. For a scalar α,
we denote by Re α and Im α the real and imaginary parts of α,
respectively. Given a column vector x, xT denotes its transpose
and x† � (x̄)T is its conjugate transpose, and similarly for a
given matrix A. Specifically, for the unitary transformation
U , U † = U −1. A quantum state |x〉 ∈ C2n

is regarded as

the normalized vector. We write RY (β ) =
[

cos β

2 − sin β

2

sin β

2 cos β

2

]
and

RZ (γ ) =
[

e−i γ
2 0

0 ei γ
2

]
.

II. SWAP TEST AND ITS QUANTUM CIRCUIT

The swap test method has been applied widely to quantum
machine learning [22–24]. In this section, we describe the
swap test and its quantum circuit.

Let |x〉, |w〉 ∈ C2n
be two quantum states that are prepared

by unitary operators Ux and Uw, respectively. That is, |x〉 =
Ux|0〉⊗n, |w〉 = Uw|0〉⊗n. The swap test is a technique that can
be used to estimate 〈x|w〉. The basic procedure can be stated
as follows:

Step 1. Prepare the state

|φr〉 = 1√
2

(|+〉|x〉 + |−〉|w〉). (1)

The quantum circuit to prepare |φr〉 is simple (see Fig. 1). We
denote the unitary to prepare |φr〉 as Uφr .

Step 2. Construct the unitary transformation

Gr = (I⊗(n+1) − 2|φr〉〈φr |)(Z ⊗ I⊗n)

= Uφr (I⊗(n+1) − 2|0〉⊗(n+1)〈0|⊗(n+1))U †
φr

(Z ⊗ I⊗n), (2)

where Z = |0〉〈0| − |1〉〈1| is the Pauli Z matrix. The circuit
to implement Gr is represented in Fig. 2. As for the unitary
operator I⊗(n+1) − 2|0〉⊗(n+1)〈0|⊗(n+1), we can run it in the
circuit shown in Fig. 3.

FIG. 2. Quantum circuit to implement Gr .

FIG. 3. Quantum circuit to run I⊗(n+1) − 2|0〉⊗(n+1)〈0|⊗(n+1).

The state |φr〉 can be rewritten as

|φr〉 = 1
2 (|0〉(|x〉 + |w〉) + |1〉(|x〉 − |w〉)). (3)

The amplitude of |0〉 is
√

1 + Re〈x|w〉/√2, and the amplitude
of |1〉 is

√
1 − Re〈x|w〉/√2. We denote |u〉 and |v〉 as the

normalized states of |x〉 + |w〉 and |x〉 − |w〉, respectively.
Then there is a real number θr ∈ [0, π/2] such that

|φr〉 = sin θr |0〉|u〉 + cos θr |1〉|v〉. (4)

Moreover, θr satisfies cos θr = √
1 − Re〈x|w〉/√2, i.e.,

Re〈x|w〉 = − cos 2θr . (5)

We apply the Schmidt decomposition method to the quan-
tum state |φr〉, and we can decompose it into

|φr〉 = −i√
2

(eiθr |w+〉 − e−iθr |w−〉), (6)

where |w±〉 = 1√
2
(|0〉|u〉 ± i|1〉|v〉). Besides, it is easy to

check that

Gr |w±〉 = e±i2θr |w±〉. (7)

This means |w±〉 are the eigenstates of Gr . The information of
θ is contained in the arguments of the eigenvalues.

Step 3. Use the quantum phase estimation algorithm to
estimate θ . The quantum circuit is shown in Fig. 4.

In Fig. 4, t is an integer that relates to the precision, and FT
is the quantum Fourier transform. The control gate Gj

r should
be regarded as a composition of a series of controlled gates
G2i

r by viewing the ith qubit in the first register as the control
qubit, where i = 0, . . . , t − 1.

By Eqs. (6) and (7), the output of the quantum phase
estimation is an approximate of

|ψr〉 = −i√
2

(eiθr |yr〉|w+〉 − e−iθr |2t − yr〉|w−〉), (8)

FIG. 4. Quantum phase estimation to estimate θ .
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FIG. 5. Structure of a quantum neuron, where |d〉 = f (〈x|w〉) is
the output state.

where yr ∈ [0, 2t−1] and yrπ/2t−1 is an approximate of 2θr .
By Eq. (5), we have

Re〈x|w〉 ≈ − cos(πyr/2t−1). (9)

Note that Im〈x|w〉 = −Re〈x|i|w〉; thus, the proposal to
estimate the real part of the inner product is also suitable to
estimate Im〈x|w〉. We only need to consider the state |φi〉 =

1√
2
(|+〉|x〉 − i|−〉|w〉). Finally, we obtain a yi ∈ [0, 2t−1] such

that

Im〈x|w〉 ≈ − cos (πyi/2t−1). (10)

For convenience, the corresponding parameters, unitaries, and
quantum states used to estimate Im〈x|w〉 are accordingly
denoted by θi, yi, Uφi , Gi, Uψi , and |φi〉, |ψi〉.

III. CONSTRUCTION OF THE QUANTUM NEURON

A. Definition of the quantum neuron

A classical neuron can be treated as a function that maps
a vector x = (x1, . . . , xn)T ∈ Rn to a real value z = f (xT w),
where w = (w1, . . . ,wn)T ∈ Rn and f is usually a nonlinear
function. {xi}n

i=1 and {wi}n
i=1 are called the input values and

synaptic weights, respectively. The function f is called the
activation function. Similarly, we propose the definition of
quantum neuron as follows:

Definition 1. Let |w〉 = |w1, . . . ,wn〉 ∈ (C2)⊗n be a prod-
uct state. We denote B(0, 1) = {a ∈ C : |a| � 1}. Assuming
that f is a map from B(0, 1) to the subspace of C2 with unit
norm, then the map

F : C2n → C2,

|x〉 	→ f (〈x|w〉), (11)

is called an n-variable quantum neuron.
In the n-variable quantum neuron, we call |x〉 the input

state, {|wi〉}i the (synaptic) weight states, and f (〈x|w〉) the
output state. The map f plays the role of the activation
function in defining the quantum neuron. Figure 5 shows the
basic structure of the quantum neuron.

Assuming that a ∈ C, a commonly used activation function
in this paper is

f (a) = RZ

(
−π

2

)
RZ (arccos −Ima)RY (arccos −Rea)|0〉

=
[

cos
(

arccos −Rea
2

)
ei( π

4 − arccos −Ima
2 )

sin
(

arccos −Rea
2

)
e−i( π

4 − arccos −Ima
2 )

]
. (12)

The operator RZ (−π/2) is added to make sure that if a ∈ R
then

f (a) =
[

cos
(

arccos −a
2

)
sin

(
arccos −a

2

)
]

∈ R2.

B. Realization of the output state in the quantum circuit

Now we assume that the activation function f is defined by
Eq. (12). Let |x〉 ∈ C2n

be an input state and |w〉 ∈ (C2)⊗n be a
weight state. In this section, we show how to realize f (〈x|w〉)
in the quantum circuit.

We first show how to realize f (〈x|w〉) in the quantum
circuit in the ideal case, then extend it into the general case.
By ideal, we mean both arccos −Re〈x|w〉

2π
and arccos −Im〈x|w〉

2π
can be

represented in binary form with t bits precisely. As a result, a
swap test can approximate these two values with no error; i.e.,
Eqs. (9) and (10) are exact.

By Eqs. (9), (10), and (12),

f (〈x|w〉) = RZ (−π/2)RZ (πyi/2t−1)RY (πyr/2t−1)|0〉. (13)

To prepare the state (13), first we consider |ψr〉|0〉, where
|ψr〉 is given in Eq. (8). We want to generate the state
RY (πyr/2t−1)|0〉 in the third register of |ψr〉|0〉 by viewing
|yr〉 and |2t − yr〉 as control registers. That is to obtain the
following transformation:

|ψr〉|0〉 = −i√
2

(eiθr |yr〉|w+〉 − e−iθr |2t − yr〉|w−〉)|0〉

	→ |ψr〉RY (πyr/2t−1)|0〉.
The control rotation generated by |yr〉 gives RY (πyr/2t−1)

directly. However, the control rotation generated by |2t − yr〉
gives RY (π (2t − yr )/2t−1) = −XRY (πyr/2t−1)X . To modify
this, it suffices to add a control X and control −X gate.
More precisely, assuming that y′

r ∈ {yr, 2t − yr} and
y′

r = ∑t−1
j=0 2 jy′

r,t− j−1 in binary form, then the control qubit
is |y′

r,0〉. If y′
r,0 = 0, then we know y′

r = yr and we just apply
the control rotation RY (πy′

r/2t−1) to |0〉. If y′
r,0 = 1, then we

know y′
r ∈ {2t−1, 2t − yr}. In this case, we apply the X gate

to |0〉 first, then apply the control rotation RY (πy′
r/2t−1), and

finally apply −X to the result. The quantum circuit is shown
in Fig. 6(a).

If we consider |ψi〉RY (πyr/2t−1)|0〉, then based on the fact
that RZ (π (2t − yi )/2t−1)|0〉 = −XRZ (πyi/2t−1)X and the
above analysis, we can generate |ψi〉RZ (πyi/2t−1)RY (πyr/

2t−1)|0〉 by the quantum circuit of Fig. 6(b).
Finally, we conclude the above two procedures in Fig. 7

by adding RZ (−π/2) to generate f (〈x|w〉), where RYfr
(t ) and

RZ fi
(t ) are short for the control operators used in Figs. 6(a)

and 6(b), respectively.
Generally, arccos −Re〈x|w〉

2π
and arccos −Im〈x|w〉

2π
cannot be written

in binary form precisely. And yr and yi only give approximates
of them. By introducing measurements to the original circuit,
the quantum circuit given in Fig. 8 returns an approximate
of f (〈x|w〉) with high probability. For a detailed proof see
Appendix A.

Theorem 1. Let |x〉 ∈ C2n
be a quantum state and |w〉 ∈

(C2)⊗n be a product state. Let t = m + �log2 (2 + 1
σ

)� be
the number of ancilla qubits used in the quantum phase

012334-3
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FIG. 6. The quantum neuron to generate RZ (πyi/2t−1)|dr〉,
where |dr〉 = RY (πyr/2t−1)|0〉.

estimation, where σ ∈ (0, 1) and m ∈ Z+. Assume that |d̃〉
is the state obtained by the quantum circuit given in Fig. 8.
Then with success probability at least 1 − σ , we have ‖|d̃〉 −
|d〉‖ � π/2m−1, where |d〉 = f (〈x|w〉).

In Fig. 8, the purpose of performing measurements is sim-
ply to convert the mixed state (A1) in the ancillary registers
into a pure state |d̃〉 that is close to f (〈x|w〉). However, it is
unnecessary to record or store the measured results, which
makes it possible to perform quantum neurons without the
classical resources.

One thing worth noting is that the quantum neuron model
defined by Fig. 8 can be used to analyze quantum data with
real number labels through analyzing the measured results
|d̃〉. More precisely, we assume that |d̃〉 = p0|0〉 + p1|1〉 is the
output of Fig. 8. By Eq. (12), if we perform measurements on
|d̃〉, then we can estimate

|p1|2 ≈ sin2

(
arccos −Re〈x|w〉

2

)
= 1 + Re〈x|w〉

2
.

The probability |p1|2 characterizes the closeness between |d̃〉
and |1〉. It can be viewed as the label of the input state |x〉. Note
that to solve the classification problems with classical neural
networks, we need to calculate a function of the inner product
between the input and the weight. However, this inner product
is already included in |p1|2. Thus classical classification prob-
lems can also be solved by a quantum neuron. Especially for
binary classification problems, we can simply define the label
of |x〉 as a quantum state, e.g., |0〉 or |1〉.

FIG. 7. The quantum neuron in the ideal case, where |d〉 =
f (〈x|w〉).

FIG. 8. The quantum neuron in the general case.

IV. CONSTRUCTION OF THE QUANTUM
NEURAL NETWORK

The classical feedforward neural network has been used
to process data to simulate unknown nonlinear functions
[25–27]. In this section we introduce a quantum feedforward
neural network to accomplish a similar task.

Let M � {|xi〉 : i = 1, . . . , q} ⊂ C2n
be a quantum data

set. We want to apply some kind of quantum feedforward
neural network to capture the property and structure of M
theoretically. More precisely, suppose that the information of
M is included in an unknown function F0 mapping M to a
product state space with dimensions 2s, that is,

F0 : M → (C2)⊗s

|xi〉 	→ |di〉 = ∣∣di
1, . . . , di

s

〉
. (14)

Our purpose is to construct a neural network based on the
quantum neuron to simulate F0 efficiently.

Let |x〉 ∈ M be the input state and it is allowed to be entan-
gled. For convenience, we assume |x〉 is a product state; that
is, |x〉 = |x1, x2, . . . , xn〉. The state |x〉 constitutes the input
layer, i.e., the zeroth layer, of the quantum neural network.
We denote it as |z(0)〉. Suppose we have K − 1 hidden layers
and one output layer. The output layer is also known as the
K th layer. We denote the number of neurons in the kth layer
as pk , where k = 1, . . . , K and pK = s.

For k = 1, . . . , K , the jth neuron in the kth and (k − 1)th
layers are connected by an edge with weight |w(k)

i j 〉, where
i = 1, . . . , pk−1, j = 1, . . . , pk . The state of each neuron in
the kth layer is determined by the weights and the states of the
(k − 1)th layer. Thus, if we denote |z(k)

j 〉 as the state of the jth

FIG. 9. The quantum feedforward neural network.
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(a)

(b)

FIG. 10. Construction of the quantum feedforward neural network. Here the input states are |x1〉 and |x2〉, and the output state is |z(2)
1 〉.

(a) Quantum neural network model with three neurons. (b) The quantum neural network represented by a circuit. The transformations Gr1(2)

and G(2)
i1 are controlled by 4t qubits compared to before (see Fig. 11).

neuron in the kth layer, then

∣∣z(k)
j

〉 = f (k)
j

(〈
z(k−1)

∣∣w(k)
j

〉)
, (15)

where |z(k−1)〉 = |z(k−1)
1 , . . . , z(k−1)

pk−1
〉, |w(k)

j 〉 = |w(k)
1 j , . . . ,

w
(k)
pk−1 j〉, and f (k)

j is defined by Eq. (12). Figure 9 shows the
basic structure of the quantum neural network.

Example. We set n = 2, p1 = 2, K = 2, and p2 = s = 1. In
this case the quantum neural network and the corresponding
quantum circuit are shown in Figs. 10(a) and 10(b), respec-
tively.

In the construction of circuits we use the strategy of
postponing measurement. To be specific, we postpone the
measured process of each neuron in all hidden layers until the
last layer. In Fig. 10(b) we postpone 4t measured results in the
first layer.

The strategy of postponing measurement is necessary.
Suppose we want to get the output state of the neuron in
hidden layers; we need to measure the corresponding qubits
to convert the mixed state to a random pure state. Without
postponing measurement we cannot use the method of the
swap test to get the subsequent output states, which means
the neural network is interrupted. This implies that the inter-
mediate state is unreadable in the quantum neural network

and we do not care about the state of hidden layer neurons
naturally.

In this quantum neural network, we give quantitative esti-
mations of success probability and fidelity for the output state.
Its proof is presented in Appendix B.

Theorem 2. Given a quantum neural network as defined in
Fig. 9, suppose the number of the neurons in the kth layer is
pk . Let p = max{p1, . . . , pK }, ε ∈ (0, 1) and σ ∈ (0, 1). Set
m = �log2[( 2π2 p2

ε
)2K−1

π ]� + 1 and t = m + �log2(2 + K p
σ

)�.
Then with success probability at least 1 − σ we have the
fidelity

∥∥∣∣z(K )
〉 − ∣∣z̃(K )

〉∥∥ � ε. (16)

V. TRAINING PROCESS

In this section, we introduce the training process of the
proposed quantum neural network. We transform the quantum
neural network into a quantum circuit containing parameters
to be optimized. The training process of parametrized
quantum circuits has been used in many quantum algorithms
[28–30].

Suppose the quantum neural network has n neurons in the
input layer and has s neurons in the output layer. In the training

012334-5
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FIG. 11. The transformation G(2)
r1 .

process, we choose the mean square loss

L(M,W ) = 1

q

q∑
i=1

||zi〉 − |di〉|2

= 1

q

q∑
i=1

(2 − 2Re〈zi|di〉). (17)

Each input state |xi〉 ∈ M has a fixed label |di〉 =
|di

1, . . . , di
s〉. Each output state |zi〉 = |zi

1, . . . , zi
s〉 produced

by quantum circuits can be closed to |z̃i〉 with high success
probability according to Theorem 2, where |z̃i〉 is the ideal
output state decided by all the weights |w(k)

j 〉 and the activa-
tion function f defined in expression (12).

Our goal is to find a set W � {|w(k)
j 〉 : k = 1, . . . , K, j =

1, . . . , pk} of weight states such that they minimize the mean-
square loss.

Since |w(k)
j 〉 = |w(k)

1 j , . . . ,w
(k)
pk−1 j〉 is a product state, we

assume that ∣∣w(k)
i j

〉 = eiδi jk RZ (γi jk )RY (βi jk )|0〉 (18)

for some parameters βi jk, γi jk, δi jk ∈ [0, 2π ) to be tuned. We
denote the parameter vector by θ = (θ1, . . . , θL )T, where θi ∈
{βi jk, γi jk, δi jk} and L = |{βi jk, γi jk, δi jk}|. As in Figs. 8 and
10(b), the output state |zi〉 always can be obtained by perform-
ing a unitary transformation, denoted by U i(θ ), to the initial
state |0〉 and adding some measurements. Let |Zi〉 = U i(θ )|0〉;
then the output state |zi〉 is decided by the parameter vector θ

and measurement results. We denote the map from |0〉 to |zi〉
by F i(θ ). Thus, L can be viewed as a function of θ .

We explain the training process as follows.
Step 1. Initial value selection. Randomly try the initial

parameter vector θ and choose the optimal parameter denoted
by θ (0) such that the value of L is minimum.

The value of Re〈zi|di〉 for each vector θ can be obtained by
reusing the quantum swap test. Then we classically calculate
and compare the different values of L(θ ) to obtain the optimal
initial value.

Step 2. Iteration process. We use the gradient descendent
method. In the (i + 1)th step,

θ
(i+1)
l = θ

(i)
l − η

∂L
∂θl

, (19)

where η is an adjustable positive step length and l =
1, . . . , L. Combining expressions (17) and (19), we can use
the quantum-classical hybrid method to acquire the gradient:

∂L
∂θl

= −2

q

q∑
i=1

Re∂〈di|zi〉
∂θl

, (20)

∂|zi〉
∂θl

= ∂F i

∂θl
|0〉. (21)

The partial derivative of F i can be obtained by first deriving
the partial derivative of U k and then adding the corresponding
measurements.

To be specific, theoretically for arbitrary unitary
transformation, it always can be represented by the basic
unitary gates: the single-particle rotation gates and the
controlled X gates. For example, if U i = (RX (2g1(θl )) ⊗
RZ (2g2(θl )))(CNOT)(I ⊗ RZ (2g3(θl ′ ))), where g j (θl ) ∈
[0, 2π ) denotes the rotation angle for the single-particle gate
in the form of the basic unitary gates, j = 1, 2, 3,

∂U i|0〉
∂θl

= −g′
1(θl )|i(X ⊗ I )U i|0〉 − g′

2(θl )|i(I ⊗ Z )U i|0〉.
(22)

As in expression (22), we can construct the quantum circuit
for the unitary transformations i(X ⊗ I )U i and i(I ⊗ Z )U i,
respectively. Then we measure and record the corresponding
registers, collapsing i(X ⊗ I )U i|0〉 and i(I ⊗ Z )U i|0〉 to the
states denoted by |zi

p1〉 and |zi
p2〉, respectively. At last, we use

the swap test to get the value of Re〈di|zi
p1

〉 and Re〈di|zi
p2

〉 and
calculate the gradient of L by

Re∂〈di|zi〉
∂θl

= −g′
1(θl )Re

〈
di

∣∣zi
p1

〉 − g′
2(θl )Re

〈
di

∣∣zi
p2

〉
.

VI. NUMERICAL EXPERIMENT:
CLASSIFICATION ON A CHECKERBOARD

In this section, we numerically validate our model with the
following checkerboard classification task.

Consider a product state RY (θ1)|0〉 ⊗ RY (θ2)|0〉. This state
has two parameters θ1, θ2 ∈ [0, 2π ), which form a square area
C � {[0, 2π )×[0, 2π )}. Now, suppose we divide the square C
into a 2×2 checkerboard with two disjoint parts:

C0 = {[0, π )×[0, π )} ∪ {[π, 2π ) × [π, 2π )},
C1 = {[0, π )×[π, 2π )} ∪ {[π, 2π ) × [0, π )}. (23)

The task is to classify whether the input quantum state is
in the region C0 (labeled by |0〉) or C1 (labeled by |1〉). To this
end, we constructed a four-layered quantum neural network:
the input layer has two neurons corresponding to the input
state, followed by two hidden layers with eight neurons in
each of them, and the output layer has one neuron.

During the training process, we randomly generated 105

data points and applied the stochastic gradient descent algo-
rithm to minimize the loss function defined in Eq. (17). In this
numerical experiment, since the vector forms of samples are
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FIG. 12. The learning curve.

known, we calculated the loss function and the gradient in the
classical way. The learning curve is shown in Fig. 12, from
which we can see that the loss converged to about 0.23.

After training, we further generated 10 000 samples to test
our quantum neural network. The result is plotted in Fig. 13,
in which the classification accuracy achieved is 99.25%.

VII. CONCLUSIONS

The quantum neural network is introduced and its explicit
expression is obtained. The validity of the training process
of the neural network is proved theoretically. The numerical
example illustrates the potential of this model. Although
there exists the process of measurement, we do not need to
record or store any measured result, which means performing

FIG. 13. The testing result: The correct predictions are repre-
sented with dots, and the incorrect predictions are labeled with
crosses.

the quantum neural networks does not cost the resources of
classical calculations.

This proposed quantum neural network includes some
situations of classical neural networks, where the weights
constitute a vector belonging to the product state space. And it
can be used to process both quantum data with classical labels
directly and classical data with classical labels by using state
preparation.

A possible future research topic is to generalize the form
of the weights in each layer, such as that |w(k)

j 〉 is not limited
to the product state. One can also generalize the activation
operator f , which still retains validity, or to generalize the
output state of the neural network into an entangled state.
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APPENDIX A: THE PROOF OF THEOREM 1

Proof. Denote y′
r = �2tθr/π� and y′′

r = 2t − y′
r [see Eq. (4)

for the meaning of θr]. By quantum phase estimation (see
Ref. [31]), ∀σ ′ ∈ (0, 1) we can choose t = m + �log2(2 +

1
2σ ′ ) and approximate θr/π to precision 2−m with probability
at least 1 − σ ′; thus, the exact form of the state |ψr〉 in Eq. (8)
should be

−i√
2

⎡
⎢⎣eiθ

⎛
⎜⎝ ∑

ỹ′r :|ỹ′r −y′r |
�2t−m−1

βỹ′
r
|ỹ′

r〉 +
∑

ŷ′r :|ŷ′r −y′r |
>2t−m−1

βŷ′
r
|ŷ′

r〉

⎞
⎟⎠|w+〉

− e−iθ

⎛
⎜⎝ ∑

ỹ′′r :|ỹ′′r −y′′r |
�2t−m−1

βỹ′′
r
|ỹ′′

r 〉 +
∑

ŷ′′r :|ŷ′′r −y′′r |
>2t−m−1

βŷ′′
r
|ŷ′′

r 〉

⎞
⎟⎠|w−〉

⎤
⎥⎦. (A1)

Moreover,

∑
ỹ′r :|ỹ′r −y′r |
�2t−m−1

|βỹ′
r
|2

2
� 1 − σ ′

2
,

∑
ỹ′′r :|ỹ′′r −y′′r |
�2t−m−1

|βỹ′′
r
|2

2
� 1 − σ ′

2
.

In |ψr〉, all ỹ′
r provide 2−m approximates of θr/π , i.e.,

|ỹ′
r/2t − θr/π | � 2−m. We also have ỹ′′

r = 2t − ỹ′
r . Applying

the control rotation shown in Fig. 6(a) to |ψr〉|0〉, then with
probability at least 1 − σ ′ we get

|d̃ ′
r〉 = RY (ỹ′

rπ/2t−1)|0〉 (A2)

in the third register. We denote the angle between |d̃ ′
r〉 and

|dr〉 := RY (2θr )|0〉 in the Bloch sphere as ηr ; then

ηr =
∣∣∣∣ỹ′

r − 2tθr

π

∣∣∣∣ π

2t−1
� π

2m−1
. (A3)

Thus,

‖|d̃ ′
r〉 − |dr〉‖ �

√
2 − 2 cos(ηr/2) = 2 sin(ηr/4) � π/2m.

(A4)
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Similarly, with probability at least 1 − σ ′, we can obtain a
ỹ′

i such that |ỹ′
i/2t − θi/π | � 2−m. By definition,

|d̃〉 = RZ (−π/2)RZ (ỹ′
iπ/2t−1)RY (ỹ′

rπ/2t−1)|0〉,
|d〉 = RZ (−π/2)RZ (2θi )RY (2θr )|0〉.

Therefore,

‖|d̃〉 − |d〉‖
� ‖RZ (ỹ′

iπ/2t−1)(RY (ỹ′
rπ/2t−1)|0〉

− RZ (ỹ′
iπ/2t−1)RY (2θr )|0〉)‖

+ ‖RZ (ỹ′
iπ/2t−1)RY (2θr )|0〉)

− RZ (2θi )RY (2θr )|0〉‖
� ‖|d̃ ′

r〉 − |dr〉‖ + ‖RZ (ỹ′
iπ/2t−1) − RZ (2θi )‖

� π/2m + π/2m = π/2m−1.

The success probability is (1 − σ ′)2 > 1 − 2σ ′. We choose
σ = 2σ ′ ∈ (0, 1) and t = m + �log2(2 + 1

σ
)�. �

APPENDIX B: THE DETAILS OF THEOREM 2

Lemma 1. Assume that |x〉=|x1, . . . , xn〉, |x̃〉=|x̃1, . . . , x̃n〉,
where ‖|xi〉 − |x̃i〉‖ � ε for all i. Assume that |w〉 =
|w1, . . . ,wn〉. Then

(1) ‖|x〉 − |x̃〉‖ � nε.
(2) Let g(y) = arccos(−y), y ∈ [−1, 1]. ∀δ ∈ (0, 2), if

|y1 − y2| < δ, then

|g(y1) − g(y2)| � π
√

δ/
√

2.

(3) Suppose that yrπ/2t−1, yiπ/2t−1, ỹrπ/2t−1, and
ỹiπ/2t−1 are π/2m approximates of 2θr = arccos −Re〈x|w〉,
2θi = arccos −Im〈x|w〉, arccos −Re〈x̃|w〉, and
arccos −Im〈x̃|w〉, respectively, then

|d̃〉 = RZ (−π/2)RZ (ỹiπ/2t−1)RY (ỹrπ/2t−1)|0〉,
|d〉 = RZ (−π/2)RZ (2θi )RY (2θr )|0〉,

satisfies ‖|d̃〉 − |d〉‖ � π/2m−1 + π
√

nε/
√

2.
Proof.
(1) We prove the result by induction. The result is true for

n = 1. We denote |x′〉 = |x2, . . . , xn〉 and |x̃′〉 = |x̃2, . . . , x̃n〉;

then by induction ‖|x′〉 − |x̃′〉‖ � (n − 1)ε. Thus,

‖|x〉 − |x̃〉‖ � ‖|x1, x′〉 − |x̃1, x′〉‖ + ‖|x̃1, x′〉 − |x̃1, x̃′〉‖ � nε.

(2) Since |y1 − y2| � δ, we have |g(y1) − g(y2)| �
arccos(1 − δ). Note that cos(π

√
δ/

√
2) < 1 − δ; then

|g(y1) − g(y2)| � π
√

δ/
√

2.
(3) By step 1, we have ‖|x〉 − |x̃〉‖ � nε; thus,

|〈w|x〉 − 〈w|x̃〉| � nε. We denote 2θ̃r = arccos −Re〈x̃|w〉,
2θ̃i = arccos −Im〈x̃|w〉; then by step 2, |θ̃r − θr | �
π

√
nε/2

√
2, |θ̃i − θi| � π

√
nε/2

√
2. Setting |d ′〉 =

RZ (−π/2)RZ (2θ̃i )RY (2θ̃r )|0〉, then

‖|d̃〉 − |d〉‖ � ‖|d̃〉 − |d ′〉‖ + ‖|d〉 − |d ′〉‖
� π/2m−1 + π

√
nε/

√
2.

This completes the proof. �
Then combining Lemma 1 and Theorem 1, we give the

proof of Theorem 2.
Proof. We denote the error to generate |z(k)〉 as εk; then

ε0 = 0. We assume that m = �log2(π/δ)� + 1 for some δ such
that δ � π√

2

√
εk for all k � 1.

By Lemma 1, ε1 � p1
π

2m−1 � pδ. When k � 2 and
εk−1 � 2,

εk � pk

(
π

2m−1
+ π√

2

√
εk−1

)

� p

(
δ + π√

2

√
εk−1

)

�
√

2π p
√

εk−1.

Thus,

εk � (
√

2π )1+ 1
2 +···+ 1

2k−2 p1+ 1
2 +···+ 1

2k−1 δ
1

2k−1

� 2π2 p2δ
1

2k−1 .

Setting εK = ε shows that δ = (ε/2π2 p2)2K−1
. And we can

check that εk < 2π2 p2δ
1

2k−1 < ε < 2.
By Theorem 1, if t = m + log2(2 + 1

σ ′ ), the success prob-
ability is (1 − σ ′)K p. Let σ = K pσ ′ ∈ (0, 1); then

(1 − σ ′)K p =
(

1 − σ

K p

)K p

� 1 − σ.

�
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