145,190 research outputs found

    Far-infrared measurements of oxygen-doped polycrystalline La2CuO4.0315 superconductor under slow-cooled and fast-cooled conditions

    Full text link
    We have studied the far-infrared (far-IR) charge dynamics of an equilibrated pure oxygen doped La2CuO4+0.0315 under slow-cooled and fast-cooled conditions. The superconducting transition temperature (Tc) for the slow-cooled and that for the fast-cooled processes were respectively found to be close to the two intrinsic Tc's: One at 30 K and the other at 15 K. Direct comparison with our previous results and other far-IR and Raman studies on single crystalline La2-xSrxCuO4, we conclude that the topology of the pristine electronic phases that are responsible for the two intrinsic Tc's is holes arranged into two-dimensional (2D) square lattices.Comment: Submitted to PR

    High-Efficient Parallel CAVLC Encoders on Heterogeneous Multicore Architectures

    Get PDF
    This article presents two high-efficient parallel realizations of the context-based adaptive variable length coding (CAVLC) based on heterogeneous multicore processors. By optimizing the architecture of the CAVLC encoder, three kinds of dependences are eliminated or weaken, including the context-based data dependence, the memory accessing dependence and the control dependence. The CAVLC pipeline is divided into three stages: two scans, coding, and lag packing, and be implemented on two typical heterogeneous multicore architectures. One is a block-based SIMD parallel CAVLC encoder on multicore stream processor STORM. The other is a component-oriented SIMT parallel encoder on massively parallel architecture GPU. Both of them exploited rich data-level parallelism. Experiments results show that compared with the CPU version, more than 70 times of speedup can be obtained for STORM and over 50 times for GPU. The implementation of encoder on STORM can make a real-time processing for 1080p @30fps and GPU-based version can satisfy the requirements for 720p real-time encoding. The throughput of the presented CAVLC encoders is more than 10 times higher than that of published software encoders on DSP and multicore platforms

    On the duality relation for correlation functions of the Potts model

    Full text link
    We prove a recent conjecture on the duality relation for correlation functions of the Potts model for boundary spins of a planar lattice. Specifically, we deduce the explicit expression for the duality of the n-site correlation functions, and establish sum rule identities in the form of the M\"obius inversion of a partially ordered set. The strategy of the proof is by first formulating the problem for the more general chiral Potts model. The extension of our consideration to the many-component Potts models is also given.Comment: 17 pages in RevTex, 5 figures, submitted to J. Phys.

    Surface motion in the pulsating DA white dwarf G 29-38

    Get PDF
    We present time-resolved spectrophotometry of the pulsating DA white dwarf G 29-38. As in previous broad-band photometry, the light curve shows the presence of a large number of periodicities. Many of these are combination frequencies, i.e., periodicities occurring at frequencies that are sums or differences of frequencies of stronger, real modes. We identify at least six real modes, and at least five combination frequencies. We measure line-of-sight velocities for our spectra and detect periodic variations at the frequencies of five of the six real modes, with amplitudes of up to 5 km/s. We argue that these variations reflect the horizontal surface motion associated with the g-mode pulsations. No velocity signals are detected at any of the combination frequencies, confirming that the flux variations at these frequencies do not reflect physical pulsation, but rather mixing of frequencies due to a non-linear transformation in the outer layers of the star. We discuss the amplitude ratios and phase differences found for the velocity and light variations, as well as those found for the real modes and their combination frequencies, both in a model-independent way and in the context of models based on the convective-driving mechanism. In a companion paper, we use the wavelength dependence of the amplitudes of the modes to infer their spherical degree.Comment: 12 pages, 5 figures, mn.sty. Accepted for publication in MNRA

    Mode identification from time-resolved spectroscopy of the pulsating white dwarf G 29-38

    Get PDF
    We have used time-resolved spectroscopy to measure the colour dependence of pulsation amplitudes in the DAV white dwarf G 29-38. Model atmospheres predict that mode amplitudes should change with wavelength in a manner that depends on the spherical harmonic degree l of the mode. This dependence arises from the convolution of mode geometry with wavelength-dependent limb darkening. Our analysis of the six largest normal modes detected in Keck observations of G 29-38 reveals one mode with a colour dependence different from the other five, permitting us to identify the l value of all six modes and to test the model predictions. The Keck observations also show pulsation amplitudes that are unexpectedly asymmetric within absorption lines. We show that these asymmetries arise from surface motions associated with the non-radial pulsations (which are discussed in detail in a companion paper). By incorporating surface velocity fields into line profile calculations, we are able to produce models that more closely resemble the observations.Comment: 10 pages, 9 figures, mn.sty. Accepted for publication in MNRA
    corecore