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A B S T R A C T

We have used time-resolved spectroscopy to measure the colour dependence of pulsation

amplitudes in the DAV white dwarf G29-38. Model atmospheres predict that mode ampli-

tudes should change with wavelength in a manner that depends on the spherical harmonic

degree ` of the mode. This dependence arises from the convolution of mode geometry with

wavelength-dependent limb darkening. Our analysis of the six largest normal modes

detected in Keck observations of G29-38 reveals one mode with a colour dependence

different from the other five, permitting us to identify the `-value of all six modes and to test

the model predictions. The Keck observations also show pulsation amplitudes that are

unexpectedly asymmetric within absorption lines. We show that these asymmetries arise

from surface motions associated with the non-radial pulsations (which are discussed in detail

in a companion paper). By incorporating surface velocity fields into line profile calculations,

we are able to produce models that more closely resemble the observations.
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1 I N T R O D U C T I O N

Despite observations over a broad range of wavelengths and via

numerous techniques, the star G29-38 remains an enigma. It is the

third brightest ZZ Ceti known �V � 13:05�; and has pulsation

amplitudes among the largest measured for these variables (up to

6 per cent modulations at optical wavelengths). It is the most

extensively observed large-amplitude ZZ Ceti star, having been

the subject of two global observing campaigns (Winget et al.

1990; Kleinman et al. 1994) and of countless single-site time-

series measurements (Kleinman et al. 1998). It has also been the

target of several infrared and radial velocity studies following the

detection of an infrared excess by Zuckerman & Becklin (1987).

Nevertheless, we still have neither an unambiguous asteroseismo-

logical solution for the star, nor an explanation for the source of

the mysterious dust apparently responsible for its excess emission

in the infrared.

Recently, Kleinman (1995; see also Kleinman et al. 1998)

analysed all of the optical time-series photometry of this object,

and showed that, in spite of the changing character of the pulsation

spectrum each season, there is a stable set of recurring modes.

This is an important breakthrough for G29-38, and perhaps for all

the large-amplitude ZZ Ceti stars, because measuring mode

periods is a prerequisite for measuring mass and internal structure

using stellar seismology. The only remaining obstacle is to

identify the spherical harmonic degree ` and radial order n of the

modes detected, so that their periods can be compared with those

of like eigenmodes in structural models of white dwarf stars.

The pattern identified by Kleinman (1995) is sufficiently rich

that he was able to attempt mode identification using the same

techniques as have been applied successfully to DOV (Winget

et al. 1991) and DBV pulsators (Winget et al. 1994). He searched

for the (roughly) equal period spacings and frequency splittings

that signify rotationally split non-radial g modes. His attempt was

a measured success: he found that the pattern of modes was

sensible if interpreted as a sequence of mostly ` � 1 modes.

Unfortunately, his analysis could not assure that any individual

mode was ` � 1; nor did it allow an unambiguous comparison

with structural models (Bradley & Kleinman 1996).

With this in mind, and having available to us the bright portion

of a night allocated to very faint sources at the Keck II telescope,

we decided to test a method for identifying the degree of pulsation

modes using G29-38 as our subject. The method was inspired by
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the work of Robinson et al. (1995), who used Hubble Space

Telescope high-speed photometry in the ultraviolet to measure `
for modes in the star G117-B15A. Their technique exploited the

sensitivity of ZZ Ceti mode amplitudes to the wavelength of the

observations. At all wavelengths, the observed amplitudes are

diminished by cancellation between surface regions with opposite

pulsation phase. In the ultraviolet, stronger limb darkening

changes the character of this cancellation, and observed mode

amplitudes differ from their optical values in a manner that

depends on `. The models calculated by Robinson et al. (1995) to

explore differences between the ultraviolet and the optical also

show amplitude changes within optical absorption lines. The

character of these changes likewise depends upon `, providing the

potential to determine ` from optical spectroscopy.

In an attempt to measure the line profile variations of G29-38

and use them for ` identification, we acquired over 4 h of time-

resolved spectroscopy using the Keck II Low Resolution Imaging

Spectrometer (LRIS: Oke et al. 1995). We have described these

observations in a companion paper (van Kerkwijk et al. 2000,

hereafter Paper I), and presented an analysis of the periodicities

present in the total flux and line-of-sight velocity curves. Prior to

our Keck observations, the velocity variations associated with ZZ

Ceti pulsations had never been detected. Their presence signifi-

cantly complicates the models required to understand our data

fully, but also increases the amount of valuable information that

we can hope to extract.

In this paper we present our analysis of the line profile

variations of G29-38. We begin in Section 2, with an analysis of

the average spectrum, which has a signal-to-noise ratio higher

than usual for white dwarf spectra. In Section 3 we present the

amplitudes and phases as a function of wavelength for the largest

modes, and compare them with each other and with theoretical

models like those calculated by Robinson et al. (1995). On this

basis alone it will be clear that we can unambiguously identify `
for these modes. It will also be clear that good quantitative fits to

the data will require improvements to model atmospheres. None

the less, we will continue in Section 4 by incorporating the

velocity field associated with the pulsations into the models. The

improved models help to constrain other pulsation properties, such

as the velocity amplitude of motions at the stellar surface. We

present our conclusions in Section 5.

2 T H E M E A N S P E C T R U M

By averaging together all of our time-series spectra, we have

constructed a mean spectrum with extremely high signal-to-noise

ratio. This spectrum shows Balmer lines (Hb to Hi), the Ca ii

l3933 resonance line, and a hint of Mg ii l4481 (Paper I). Metal

lines were first discovered in G29-38 by Koester, Provencal &

Shipman (1997), who also found iron lines in the ultraviolet

spectrum. The presence of metals in a DA spectrum is unusual,

and Koester et al. (1997) attribute them to the accretion of dust,

supporting the notion that the infrared excess in the spectrum of

G29-38 is caused by reprocessing of light by circumstellar dust

grains.

We have fitted the Balmer lines in our mean spectrum using a

grid of model spectra kindly provided by D. Koester (for a recent

description, see Finley, Koester & Basri 1997). The models consist

of tabulated intensities, Il , at nine limb angles, m � cos u; for a

grid of atmospheres with effective temperatures spanning the ZZ

Ceti instability strip and with gravities from log g � 7:50 to 8.75.

The atmospheres were all calculated using the ML2, a � 0:6
prescription for convection, which yields consistent fits for ZZ

Ceti stars over the broadest range of wavelengths (Bergeron et al.

1995). To compare the models with our spectrum we integrated Il
over the visible hemisphere and compared the resulting Balmer

lines with those that we observed by normalizing both model and

data to fixed continuum points. This method is similar to that used

by Bergeron, Saffer & Liebert (1992), but less sophisticated than

the procedure that Bergeron et al. (1995) used for their analysis of

ZZ Ceti spectra.

Fig. 1 shows the observed Balmer lines along with the best-

fitting model, which has Teff � 11 850 K and log g � 8:05: These

values are close to those published for G29-38 by Bergeron et al.

(1995) and Koester et al. (1997). The former found Teff �
11 820 K and log g � 8:14; the latter Teff � 11 600 K and log g �
8:05: Using the evolutionary models of Wood (1994) with thick

surface H layers (,1024M*), our values translate into a mass of

0.64 M(.

As impressive as the fit in Fig. 1 is, the discrepancies between

model and data are still dominated by systematic effects, rather

than stochastic noise. This makes the values of x2 that we

calculate useless for evaluating the error in our temperature and

gravity determination; the error is dominated by real differences

between the models and the measurements. These differences

might arise from a variety of sources.

One possibility is that the normalization of our data to the

continuum points was affected by errors in our calibration of the

instrumental response. Another possibility is that errors arise from

the presence of metal lines not included in the models. The shapes

of H8 � Hz and He are probably affected by depression of the

intervening continuum by the Ca ii l3933 line, and He is con-

taminated by Ca ii l3968. However, the metal lines cannot

entirely account for the problem, because the fits to Hb , Hg and

Hd , which should be unaffected by metals, are also less than

perfect.

The discrepancy in the fits might also be due to a problem

discussed by Koester, Allard & Vauclair (1994). They found that

even the best prescription for convection yields a temperature

structure in model atmospheres that is only approximately correct.

Consequently, the synthetic spectra that the models produce will

not match observed spectra at every wavelength simultaneously,

q 2000 RAS, MNRAS 314, 220±228

Figure 1. The best overall fit to the line profiles Hb to H11 in the average

spectrum of G29-38. The model (dotted line) has log g � 8:05 and Teff �
11 850 K: The dip on the blue side of He is the Ca ii l3933 line.
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nor will they match all the line profiles, which are highly sensitive

to the run of temperature with depth. To explore this possibility,

and to see how our final fit is affected by individual lines, we have

fitted separate models to each of the Balmer lines.

In Fig. 2, we plot the values of log g and Teff for the best-fitting

models of the individual lines Hb to H9. They span a range of

temperature from 11 620 to 12 885 K. With the exception of H9 �
Hh; the fits show a trend to higher Teff and lower log g as the

excitation level increases. The location of the fit using all lines

compared with the individual lines shows that the gravity fit is

dominated by the lines of higher excitation, which are known to be

more gravity-sensitive. Conversely, the temperature is fixed by the

lower excitation lines, which change more rapidly with Teff.

Fig. 2 is not meant to suggest that the individual fits give

answers inconsistent with the global fit; rather, they should be

regarded as helping to establish the uncertainty of the temperature

and gravity determination. It is clear that high signal-to-noise ratio

alone is not enough to improve the determination of temperature

and gravity. Better calibration of the instrument or improvements

to the models (or both) will be necessary. The systematic trend in

the individual Balmer line fits suggests that the problem lies with

the models, as do the results of the following section. There we

compare fractional amplitudes calculated from data and models,

and find further discrepancies. In the fractional amplitudes,

calibration errors should cancel to first order.

If the models turn out to be responsible for the discrepancies

that we measure, our high signal-to-noise ratio average spectrum

will provide the opportunity to improve atmospheric models,

perhaps even to infer the correct temperature profile. Furthermore,

individual spectra in our time series, which themselves have a

signal-to-noise ratio of 100, span a temperature range of about

500 K and will show how the atmospheric structure should change

with model temperature. This information about the derivative of

the thermal profile should provide extremely valuable constraints

on model atmospheres. Our data are available upon request to

anyone interested in exploring these problems.

The final factor that might affect our model fit is the presence of

relatively large-amplitude pulsations. We have shown in Paper I

that the velocity fields associated with the pulsations of G29-38

are detectable in our data. These motions alter the average

spectrum, mainly by Doppler broadening the absorption lines very

slightly. The models that we will describe in Section 4 allow us to

incorporate this effect into the model spectrum. Fitting the data

with these velocity-broadened spectra yields a slight improvement

in the quality of the fit to the average spectrum, but an

insubstantial change in the values of log g and Teff that we infer

from the models.

3 L I N E P R O F I L E VA R I AT I O N S

Robinson et al. (1995) have described and implemented a method

for distinguishing the value of ` in ZZ Ceti stars by comparing

pulsation amplitudes at different wavelengths. Their method relies

upon the increased importance of limb darkening in the ultra-

violet. Non-radial pulsation modes of every ` suffer from

geometric dilution in their amplitudes when averaged over the

visible hemisphere. This dilution increases with ` as cancellation

between regions with opposing phase becomes important. How-

ever, at short wavelengths increased limb darkening diminishes

the effect of the cancellations. For ` < 3; the net result is that

mode amplitudes increase in the ultraviolet relative to their optical

values in a way that depends on `. Robinson et al. (1995) used

optical and ultraviolet high-speed photometry to measure this

effect for the 215-s pulsation mode in G117-B15A. They were

able to conclude that this mode is ` � 1: Fontaine et al. (1997) re-

analysed the same data using independent models and arrived at

the same conclusion, although they differed from Robinson et al.

in the model temperature that best fits the data.

The models that Robinson et al. (1995) calculated also showed

`-dependent differences in the behaviour of pulsation amplitudes

within the absorption lines. These too arise from the effects of

limb darkening on modes of different `. Fig. 3 shows these

changes for low values of `, which are expected to dominate the

modes observed in white dwarfs. We calculated these curves using

a modified version of code originally provided to us by E. L.

Robinson (see Robinson et al. 1995). Instead of integrating over a

limb-darkening law, we integrate over intensities tabulated for

different values of m , as described in Section 2. Consequently,

equations (3a) and (3b) in Robinson et al., which represent the

equilibrium flux and the flux changes arising from the pulsations,

q 2000 RAS, MNRAS 314, 220±228

Figure 3. Models for the wavelength-dependent flux variations for modes

of ` � 1±4; after Robinson et al. (1995). We have used the values of log g

and Teff from our best fit to the average spectrum and convolved the output

with a Gaussian of 5-AÊ width to match our Keck observations. All curves

are normalized at 5500 AÊ . The solid line is for ` � 1; the short-dashed line

is for ` � 2; the dotted line is for ` � 3; and the long-dashed line is for

` � 4:

Figure 2. Location of best fits to the individual Balmer lines in the Teff ±

log g plane. Fits to individual lines are denoted by the line designations; the

best fit using all the lines (see Fig. 1) is shown as a filled circle.
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become

Fl � 2pR2
0

�1

0

Il�g; T0;m�m dm �1�

and

DFl � 2pR2
0 R0

dT

dR

� �
ek`m cos�st�

�
�1

0

­Il�g; T;m�
­T

����
T0

P`�m�m dm: �2�

Here, R0 is the equilibrium stellar radius, T0 is the equilibrium

temperature, e is the amplitude of the radius changes induced by

the pulsations, and dT/dR is the Lagrangian derivative of tem-

perature with respect to radius. Together P`(m) and k`m represent

the surface distribution of the temperature changes after integrat-

ing in the f-direction. P`(m) is a Legendre polynomial depending

only on m , and k`m depends on the angle between the pulsation

axis and the observer's line of sight. Our notation is slightly

different from Robinson et al. (1995) in that we have separated the

time dependence, cos(s t), from k`m. Finally, while Il (g, T,m)

comes directly from the tabulated models, ­Il (g, T,m)/­T must be

calculated by taking differences between models of different Teff.

Robinson et al. (1995) have emphasized the useful properties of

the ratio DFl /Fl for ` identification. It is not sensitive to the flux

calibration of the data and varies with wavelength in a way that

does not depend on mode inclination and m (see also the

Appendix). In Fig. 3 we show DFl /Fl for modes of ` � 1±4: The

curves have been normalized to 1 at 5500 AÊ . We have not included

` � 0; which resembles ` � 1 with slightly smaller modulations,

because it is clear from the long periods of the modes that they

cannot be radial pulsations.

In order to compare our data with the models in Fig. 3, we have

fitted the amplitudes and phases of the 11 largest pulsation

frequencies in each 2-AÊ wavelength bin using the function

A cos�2pft 2 f�: During these fits, we held the mode frequency, f,

constant at the values tabulated in Paper I, and fitted the 11

amplitudes and phases simultaneously. Of these 11 modes, five are

combination frequencies, i.e. frequencies that have values that are

sums or differences of larger modes. We have discussed the nature

of combination frequencies in Paper I and will return to them at

the end of this section. Fig. 4 shows the fractional amplitudes at

each wavelength for the six physical modes and for the four

largest combination frequencies. The fifth, F32F1 at 10 322 s, we

judged too noisy to include. The qualitative similarity between the

data and the models is striking. Even in the line cores the models

predict the behaviour of mode amplitudes quite well, despite

the fact that, within ,1 AÊ of the core, non-LTE effects in the

atmosphere (which are difficult to model) are important. We

emphasize that these are predictions in the literal sense:

Koester calculated the atmospheric models before we acquired

the data.

In the models that we have discussed so far, the pulsations have

the same phase at every wavelength. However, the phases of the

physical modes, shown in Fig. 5, show distinct changes in the

vicinity of spectral features. For mode F1, the phase changes

within absorption lines bear the signature of a velocity-induced

variation; they change with the derivative of the spectrum. We will

return to these phase changes in Section 4, when we have models

capable of reproducing them. In addition to the phase changes

within the lines, Fig. 5 also shows a small slope in the continuum

phases, indicating that pulse maximum in blue light arrives earlier

than in red by a few seconds. This slope is not reproduced by our

models, and remains a mystery.

Careful inspection of the amplitudes of the real modes in Fig. 4

reveals that those for mode F4, at 776 s, show a different shape

from those for the other modes: they increase more sharply in the

line cores and curve more steeply in the continuum. F4 was

already noticeably different from the other real modes in Paper I,

where we found that it had a larger velocity-to-light amplitude

ratio than any of the other modes, and it produced a stronger

harmonic.

To help see the differences in F4, we have normalized the

amplitudes of F1 and F4 at 5500 AÊ and plotted the modes together

q 2000 RAS, MNRAS 314, 220±228

Figure 4. Wavelength-dependent amplitudes for the six largest modes and

four largest combination frequencies in G29-38. To ease comparison, the

same logarithmic scale was used for all panels. Note the small peak seen in

the amplitudes of F1 at 3933 AÊ , corresponding to the Ca ii line.
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in Fig. 6. The most likely explanation for the differences that we

see is that F4 has a value of ` different from F1. Qualitative

application of the theoretical models demands that ` must be

higher for F4, to yield the larger changes in amplitude that we

observe. Furthermore, the large contrast between modes of ` � 2

and higher in the models, versus the more modest differences seen

in Fig. 6, points toward the conclusion that F4 is ` � 2 and F1 is

` � 1:
To test this possibility further, we can make a direct comparison

between the data and models. In Fig. 7 we have plotted the

theoretical and observed amplitudes for modes 1, 2, 4 and 5. To

establish the normalization, we multiplied the theoretical curves

by the amplitudes of each mode at 5500 AÊ . We have used a model

with gravity and equilibrium temperature inferred from our fit to

the average spectrum in Section 2. As with the average spectrum,

Fig. 7 shows discrepancies between the data and the models. The

slope of the amplitude changes is steeper in the data than in the

models, worsening the fit at short wavelengths. Correcting this

would require hotter models at shorter wavelengths, the same

trend as is required to fit to individual Balmer lines in the average

spectrum. We could not find a model at any single temperature

that offered a substantially better fit than the model we have used.

In spite of the difficulties with the fits, it is clear that ` � 1 is a

better match to modes F1, F2 and F5, while ` � 2 is a better fit to

mode F4. Interestingly, this is most apparent in the continuum

variations between 4500 and 4700 AÊ ; the models are too poor a fit

within the lines to provide a measure of ` there. None the less, our

original expectation that the line profiles would offer the most

sensitive ` discriminant are borne out by the large differences

between the amplitudes at line centre in F4 and those in the other

modes. We have included F5 as the representative of the noisier

low-amplitude modes. Even with the higher noise it is clear that

` � 1 is a better fit to this mode, as it is to every mode except

mode F4.

Even though the quantitative agreement is poor at many

wavelengths, the presence of two apparently different values of `
makes our identification secure. The values of ` chosen are

independent of the model temperature. Lowering the effective

temperature of the model chosen diminishes the changes in mode

amplitudes, so that, at some T, the ` � 2 model would fit mode F1

and those like it, but at that temperature no value of ` fits F4.

Likewise, attempts to fit F4 with ` � 1 by increasing model

q 2000 RAS, MNRAS 314, 220±228

Figure 5. Wavelength-dependent phases for the six largest normal modes

in G29-38.

Figure 6. Amplitude comparison for F1 (solid line) and F4 (discrete

points). The amplitudes have been normalized to 1 at 5500 AÊ .

Figure 7. Comparison with models for modes 1, 2, 4 and 5. The solid line

is for ` � 1; the dashed line is for ` � 2: The models were calculated

using log g � 8:05 and equilibrium Teff � 11 850 K; as derived from the

fits to the average spectrum.
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temperature leave no ` of lower value to fit the other modes.

Consequently, on the basis of qualitative behaviour alone, we can

conclude that the 776-s mode is ` � 2; and the remaining five

modes are ` � 1:
Finally, we consider the combination modes shown in Fig. 4.

The combination frequencies that we see in G29-38 and other ZZ

Ceti stars probably arise not from eigenmode pulsations, but from

a non-linear transformation of the modes in the outer layers of the

white dwarf (Brickhill 1992; cf. Brassard, Fontaine & Wesemael

1995). This mixes the modes present, generating signals at sums

and differences of the mode frequencies. The ` character of these

modes depends on the ` of the modes that produce them. For

example, we expect the combination of two �`;m� � �1; 0� modes

to have ` � 0 and 2 components, while those of two (1,21)

modes or two (1,1) modes should produce only ` � 2: These

expectations arise from the mathematical properties of spherical

harmonics only. It is impossible to make quantitative predictions

about combination modes without a detailed theory explaining

how they are produced. We have shown two combination

frequencies along with models in Fig. 8. Like the other

combinations, they most resemble the modes that we have

identified as ` � 1:

4 M O D E L S I N C L U D I N G V E L O C I T I E S

Apart from the problems with quantitative fits to the model

atmospheres, there is a significant qualitative difference between

the observed and model amplitudes in Fig. 7: the observed

amplitudes are asymmetric within the absorption lines, while the

model amplitudes are not. We showed in Paper I that the Balmer

lines not only show changes in flux during a pulsation cycle, but

also show changes in line-of-sight velocity. In that paper, we

treated these as separable components of the spectral variations,

but in reality they are components of a more complex line profile

variation. In anticipation of improvements in the model fits, in this

section we will calculate these variations by incorporating

velocities into the flux integrals that we calculate at each

wavelength. This requires that we follow a more general treatment

than that used by Robinson et al. (1995) to produce equation (1).

Our development will rely upon Robinson, Kepler & Nather

(1982) and use the same notation where possible.

The effect of the velocity field on our calculations of the

integrated flux is that the values of Il that we look up from the

tabulated spectra, and the values of ­Il /­T that we calculate from

them, must be chosen using wavelengths adjusted for the velocity

of each surface element. Thus Il in equation (1) and ­Il /­T in

equation (2) are now functions of velocity. Since the velocity has a

time dependence, both quantities are now also implicit functions

of time. We may write the total flux at each observed wavelength

as a function of time as

F�lobs; t� � FT0
�lobs� � DFT �lobs; t�; �3�

where the T0 is a reminder that the first term comes from the

model at equilibrium temperature, and the T indicates that the flux

changes in the second term are due to changes in temperature,

which dominate all other sources (Robinson et al. 1982). It will

help in understanding equation (3) to think about two different

limits. The first is a (hypothetical) pulsation mode which has

surface motions but no temperature changes. For these modes, the

second term would be 0. The first term would be a function of

time for any lobs near spectral features that could be Doppler

shifted in and out of lobs by the changing velocities. The second

limit to think of is a mode with temperature but no velocity

variations; then the two terms in equation (3) reduce to the

expressions given by equations (1) and (2). An important feature

of equation (3) that is not present in equations (1) and (2) is the

possibility for the phase of flux maximum to differ from the phase

of temperature maximum. This means that the time of flux

maximum can differ with wavelength, a possibility that was never

allowed by equation (1).

Our expressions for the terms in equation (3) must also be more

general than before. We can write FT0
generally as

FT0
�lobs� � R2

0

�2p

0

�1

0

I�g; T0;m; l�m dm df; �4�

which is analogous to the expression used by Kepler (1984) in his

discussion of line profile variations arising from r-mode pulsa-

tions. As we have noted, the time-dependent velocities enter into

the wavelength l , so FT0
(lobs) is a function of time. Likewise,

DFT is given by

DFT �lobs; t� � R0
dT

dr

� �
eR2

0 e2ic

�
�2p

0

�1

0

­I�g; T;m; l�
­T

����
T0

jr m dm df; �5�

where j r is the assumed functional form for the perturbations in

stellar radius,

jr � Y`m�Q;F� eist: �6�
Y`m(Q,F) is the spherical harmonic of degree ` and order m in

the coordinate system (Q,F) aligned with the pulsation axis, and

s is the pulsation frequency. Compared with equation (2), we

have reverted to an expression in which the imaginary parts of the

temporal and spatial dependences are included; moreover, we

have followed Robinson et al. (1982) in adopting an extra term

e2ic to allow for the non-adiabatic effects which may introduce a

phase difference between the radial displacement and the flux

changes.1 The negative sign in the exponent indicates that, for

q 2000 RAS, MNRAS 314, 220±228

Figure 8. Comparison with models for frequencies F11F2 and F21F2.

The solid line is for ` � 1; the dashed line is for ` � 2:

1 In Robinson et al. (1982), equations (20), (23) and (24) should not have

negative signs on their right-hand sides. The quantity dT/dr is positive for

adiabatic pulsations, since maximum radial displacement corresponds to

maximum temperature. This has no effect on any of the conclusions that

Robinson et al. presented.
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positive values of c , maximum flux lags maximum radial

displacement.

In equations (4) and (5), the value of l should be the

wavelength from which light is Doppler shifted into lobs, or

l � lobs 1 2
vrad�m;f; t�

c

� �
�7�

to first order. We use vrad to express the velocity component

projected into our line of sight. Calculating vrad requires first an

expression for the pulsation velocities at the stellar surface.

In the frame of reference (Q,F) aligned with the pulsation axis,

the components of the pulsation velocities are, following

Dziembowski (1977),

Vr � iseR0Y`m�Q;F� eist;

VQ � iejgj
s

­Y`m�Q;F�
­Q

eist and

VF � 2
iejgj
s

m

sinQ
Y`m�Q;F� eist: �8�

For g-mode pulsations, Vr is small compared with the other two,

and can be ignored.

To get vrad requires transforming the remaining velocity

expressions into our reference frame and projecting them along

our line of sight. Then equations (3)±(7) are all that we need in

principle to calculate colour-dependent pulsation amplitudes in

the presence of non-zero velocities. In practice, this would be

cumbersome and inefficient for arbitrary inclination and m, so we

have further simplified the problem by aligning the pulsation axis

with our line of sight and holding m � 0: Contrary to initial

expectations, this simplification comes at almost no expense; the

results for this case scale easily to arbitrary choices for inclination

and m. In the Appendix we demonstrate that this is true and show

how the scaling is done.

This simplification allows us to dispense with the expression for

VF and to replace Q and F in all equations with u and f for our

reference frame. The f dependences of vrad, j r and Il also

disappear, and the spherical harmonics reduce to Legendre poly-

nomials. Finally, to make our fits independent of the particular

choices for stellar radius and pulsation frequency, we have

introduced the fitting parameters

aT � R0

dT

dr

���� ����e and

av � eg

s
: �9�

Thus the final expressions that we evaluate numerically are

FT0
�lobs� � 2pR2

0

�1

0

I g; T0;m; lobs 1 2
vrad

c

� �h i
m dm;

DFT �lobs; t� � 2pR2
0aT cos�st 2 c�

�
�1

0

­I g; T;m; lobs 1 2
vrad

c

� �h i
­T

������
T0

P`�m�m dm;

vrad�m; t� � 2av
dP`�m�

du
sin u sin�st�; �10�

where we have kept only the real parts of the temporal variations.

The free parameters in these equations are the temperature and

gravity of the equilibrium model, T0 and g, the (non-adiabatic)

phase shift c , and the amplitudes given by equation (9). The

equilibrium radius, R0, cancels when we calculate the fractional

amplitude.

We have modified the code originally provided by E. L.

Robinson to perform these integrals at a series of time-steps

covering one pulsation cycle. Then we have convolved the output

spectra with a Gaussian to emulate seeing. Finally, we have

calculated the pulsation amplitude, phase and mean spectrum at

each wavelength.

In Paper I, we defined the quantity DFV as the phase difference

between maximum light and maximum velocity. In the formalism

of this paper,

DFV � p

2
2 c: �11�

For the c � 0 case, where flux and radial displacement are in

phase, the p/2 delay enters because of the time derivative used to

get vrad. Positive values of c then reduce DFV by delaying the

maximum light so that it arrives less than p/2 before maximum

velocity. In all of the modes for which we can detect velocities,

DFV lies in the first quadrant, implying that flux maximum is

delayed compared with the adiabatic case (or velocity maximum

advanced, which is harder to imagine). This is a profound result,

and the first direct observational constraint on the behaviour of

eigenmodes near the surface of a white dwarf star.

Comparing our models with the data presents something of a

challenge, because of the generally poor match for any choice of

amplitude and phase. We have simplified the problem by choosing

the equilibrium temperature and gravity from our fit to the average

spectrum. Then we have fitted aT directly, by insisting that the

fractional amplitude of the flux changes in our model matches

those in the data at 5500 AÊ . To choose appropriate values for av

and c , we used our model to calculate several time series of

synthetic spectra, and then we reduced them in the same way as

the real data. This allowed us to calibrate the scaling introduced by

the integrals in equation (10) for various choices of `, av and c .

Then we used these scale factors to generate models based on the

properties measured for modes in Paper I. The size of the

velocities that we use to match our data is quite similar to the size

predicted by Robinson et al. (1982), ,7 km s21.

Fig. 9 shows the results of these calculations for the Hb line in

modes F1 and F4. Our models now reproduce the asymmetry in

the amplitude plots, and show phase changes within the line

profiles. These phase changes could never be reproduced without

including velocities in the models. However, the overall quality of

the amplitude fits within lines is not much improved, and is not

changed at all in the continuum. The phases are a good fit within

spectral lines for the larger modes, but our models still do not

reproduce the slow change in phase observed in the continuum

(see Fig. 5). For now, this remains a mystery, but probably a

mystery hiding interesting pulsation physics.

Finally, we consider the behaviour of the ratio between the

observed velocity and flux amplitudes. As we show in the

Appendix, this ratio does not depend on the inclination or m of

the modes, and therefore cannot be used to constrain those

quantities. However, it is sensitive to the value of `, as evident

from the different forms for flux and velocity in the integrals of

equation (10). The flux depends on the Legendre polynomial,

while the velocity depends on its derivative and in addition is

weighted towards the limb by the projection on to the line of sight.

According to our models, for a fixed value of av=aT ; an ` � 2

mode should have a factor of ,4 higher apparent velocity-to-light

q 2000 RAS, MNRAS 314, 220±228
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Mode identification in G29-38 227

ratio than an ` � 1 mode. It is then no surprise that mode F4,

which we have identified as ` � 2; has the highest velocity-to-

light amplitude ratio (see Paper I) of any of the modes that we

have detected, a result which supports our identification of that

mode as ` � 2:

5 S U M M A RY A N D C O N C L U S I O N S

Asteroseismology of ZZ Ceti stars has been impeded for almost

two decades by the lack of a reliable method for mode

identification. We have tested a new method that uses high

signal-to-noise ratio time-resolved spectroscopy to measure the

wavelength dependence of optical pulsation amplitudes. We have

found that the `-dependent changes in amplitude predicted by the

models are also present in our data, allowing us to assign values of

` to six modes in the star G29-38.

Initially, this will be of greatest benefit to seismological models

of G29-38. None of the modes that we have identified is short

enough to yield immediate constraints on the mass of the H layer,

as is possible for G117-B15A (Robinson et al. 1995), GD 165

(Bergeron et al. 1993) and G226-29 (Fontaine et al. 1992).

However, a concerted effort to match the six modes of known `
may yield a unique solution. If not, it is possible to return to this

star with the hope that four more hours of data will allow

identification of a different set of modes. Sooner or later, we will

have a definitive asteroseismological solution for this star; the

main obstacle has been removed.

Our method can also be extended to other ZZ Ceti stars,

although the fainter, low-amplitude stars will require longer runs.

We have already begun a programme to identify ` in as many

stars as is practical in the observing time available to us. This

programme should allow us to measure structural properties of

enough stars to answer some long-standing questions about the

DA stars, such as the masses of the H and He surface layers, which

have been the subject of some controversy (Shipman 1996;

Fontaine & Wesemael 1996).

Apart from the impact that our results will have on ZZ Ceti

seismology, they have also opened new windows into the surface

physics of pulsating white dwarfs. We have measured two new

diagnostics of the behaviour of pulsations near the photosphere:

the amplitude of the pulsation velocities, and the phase lag

between flux maximum and velocity maximum. These can be

compared quantitatively with predictions of non-adiabatic pulsa-

tion theories (e.g. Lee & Bradley 1993; Wu & Goldreich 1999), as

well as with measurements for other stars. We have already

detected velocity changes in one other star (HL Tau 76).

Finally, our high signal-to-noise ratio measurements provide a

serious challenge to the atmospheric model fits. There are

significant discrepancies between the models and our average

spectrum, and between the models and the spectral changes

caused by pulsation. We have not identified the source of these

differences, but hopefully our data and future data like them will

provide assistance to modellers in their continuing attempts to

understand the atmospheres of white dwarf stars.
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A P P E N D I X A : A R B I T R A RY I N C L I N AT I O N

A N D VA L U E O F m

The usual way to transform an arbitrary spherical harmonic into

the coordinate system aligned with our line of sight is to recognize

that the 2`� 1 spherical harmonics of a given ` form a complete

basis set, so it is always possible to express an arbitrary spherical

harmonic as a sum of spherical harmonics in our coordinate

system,

Y`m�Q;F� �
X̀

m 0�2`

R`
m 0mY`m 0 �u;f�: �A1�

The coefficients R`
m 0m are a function of the inclination angle (see

Dziembowski 1977; Robinson et al. 1982). Then the m 0 ± 0 terms

of the sum cancel to zero in any integration over the visible

hemisphere, so that only the m 0 � 0 term aligned with our line of

sight remains.

This will not work directly for the expressions that we integrate

in equations (4) and (5), because they contain I(g, T,m , l) and its

derivative with respect to T, which may be arbitrarily complex

functions of the eigenmode velocities. However, if we expand I in

a Taylor series about l ,

I�g; T;m; l� � I�g; T;m; lobs� � ­I�g; T;m; l�
­l

����
lobs

�l 2 lobs�;

�A2�

do the same for ­I/­T, and use equation (7), our expression for the

time-dependent flux becomes

F�lobs; t� � 2pR2
0

�1

0

I�m; lobs�m dm

2 R2
0

lobs

c

�1

0

�2p

0

vrad df
­I�m; l�

­l

����
lobs

m dm

� R2
0aT eist e2ic

�1

0

�2p

0

Y`m df
­I�m; lobs�

­T

����
T0

m dm:

�A3�
We have suppressed the g and T dependences, which vanish upon

choosing an equilibrium model. We have also left out the cross-term

which includes the product of ­I/­T and ­I/­l because these are

both small quantities. The remaining expression contains separate

terms for the equilibrium flux (F0), the flux changes resulting from

velocity shifts (DFv), and the flux changes arising from temperature

changes (DFT). Using equation (A1), we can transform both vrad

and Y`m in the above integral into the coordinate system (u ,f); for

both, the terms with m 0 ± 0 integrate to zero in the f-direction

(Dziembowski 1977), so only the m � 0 term aligned to our line

of sight remains. Thus we may write

F�lobs; t� � F0�lobs� � R`
0mDFv�lobs; t; i � 0;m � 0�

� R`
0mDFT �lobs; t; i � 0;m � 0�: �A4�

This expression permits us to relate DF=F�lobs; i ± 0;m ± 0� to

DF=F�lobs; i � 0;m � 0� via a simple scaling factor R`
0m: As R`

0m

does not depend on lobs, the results shown in Fig. 3 are general for

arbitrary inclination and m value. Also, because the factor is the same

for both the temperature- and velocity-induced flux changes, the

observed ratio av=aT does not depend on i and m. Finally, equation

(A4) shows that the line-of-sight velocities and flux variations are

separable to first order, a result used implicitly in Paper I.

It is important to recognize where these approximations may

break down. When the second derivative of the spectrum domi-

nates the first, which can happen in the central few aÊngstroms of

an absorption line, our expansion to first order in l is not reliable.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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