216,135 research outputs found

    Awaking the Sleeping Dragon: The Evolving Chinese Patent Laws and its Implications for Pharmeceutical Patents

    Get PDF
    Part I of this Comment will discuss the development of the Chinese IP system and discuss why it has been ineffective in protecting pharmaceutical patents by comparing it to the US patent system. Part II analyzes the third amendment to the Chinese patent law and how it protects patents, particularly pharmaceutical ones, and deters counterfeiters from infringing upon the patents. Part II also presents different views on the effectiveness of the third amendment to protect patents. Part III argues that even though the third amendment is a great leap forward, pharmaceutical counterfeiting will continue to happen if the local governments do not cooperate with the central government in enforcing patent protection laws

    Colective Effects from Induced Behaviour

    Full text link
    We present a solvable model for describing quantitatively situations where the individual behaviour of agents in a group "percolates" to collective behaviour of the group as a whole as a result of mutual influence between the agents.Comment: 6 pages, 6 figures, EPJ macro

    Swimming of a Waving Plate

    Get PDF
    The purpose of this paper is to study the basic principle of fish propulsion. As a simplified model, the two-dimensional potential flow over a waving plate of finite chord is treated. The solid plate, assumed to be flexible and thin, is capable of performing the motion which consists of a progressing wave of given wave length and phase velocity along the chord, the envelope of the wave train being an arbitrary function of the distance from the leading edge. The problem is solved by applying the general theory for oscillating deformable airfoils. The thrust, power required, and the energy imparted to the wake are calculated, and the propulsive efficiency is also evaluated. As a numerical example, the waving motion with linearly varying amplitude is carried out in detail. Finally, the basic mechanism of swimming is elucidated by applying the principle of action and reaction

    On the finiteness of the classifying space for the family of virtually cyclic subgroups

    No full text
    Given a group G, we consider its classifying space for the family of virtually cyclic subgroups. We show for many groups, including for example, one-relator groups, acylindrically hyperbolic groups, 3-manifold groups and CAT(0) cube groups, that they do not admit a finite model for this classifying space unless they are virtually cyclic. This settles a conjecture due to Juan-Pineda and Leary for these classes of groups

    Hydromechanics of swimming propulsion. Part 3. Swimming and optimum movements of slender fish with side fins

    Get PDF
    This paper seeks to evaluate the swimming flow around a typical slender fish whose transverse cross-section to the rear of its maximum span section is of a lenticular shape with pointed edges, such as those of spiny fins, so that these side edges are sharp trailing edges, from which an oscillating vortex sheet is shed to trail the body in swimming. The additional feature of shedding of vortex sheet makes this problem a moderate generalization of the paper on the swimming of slender fish treated by Lighthill (1960a). It is found here that the thrust depends not only on the virtual mass of the tail-end section, but also on an integral effect of variations of the virtual mass along the entire body segment containing the trailing side edges, and that this latter effect can greatly enhance the thrust-making. The optimum shape problem considered here is to determine the transverse oscillatory movements a slender fish can make which will produce a prescribed thrust, so as to overcome the frictional drag, at the expense of the minimum work done in maintaining the motion. The solution is for the fish to send a wave down its body at a phase velocity c somewhat greater than the desired swimming speed U, with an amplitude nearly uniform from the maximum span section to the tail. Both the ratio U/c and the optimum efficiency are found to depend upon two parameters: the reduced wave frequency and a 'proportional-loading parameter', the latter being proportional to the thrust coefficient and to the inverse square of the wave amplitude. The basic mechanism of swimming is examined in the light of the principle of action and reaction by studying the vortex wake generated by the optimum movement

    A Note on the Linear and Nonlinear Theories for Fully Cavitated Hydrofoils

    Get PDF
    The lifting problem of fully cavitated hydrofoils has recently received some attention. The nonlinear problem of two-dimensional fully cavitated hydrofoils has been treated by the author, using a generalized free streamline theory. The hydrofoils investigated in Ref. 1 were those with sharp leading and trailing edges which are assumed to be the separation points of the cavity streamlines. Except for this limitation, the nonlinear theory is applicable to hydrofoils of arbitrary geometric profile, operating at any cavitation number, and for almost all angles of attack as long as the cavity wake is fully developed. By using an elegant linear theory, Tulin has treated the problem of a fully cavitated flat plate set at a small angle of attack and operated at arbitrary cavitation number. In the case of hydrofoils of arbitrary profile operating at zero cavitation number, some interesting simple relationships are given by Tulin for the connection between the lift, drag and moment of a supercavitating hydrofoil and the lift, moment and the third moment of an equivalent airfoil (unstalled). In the present investigation, Tulin's linear theory is first extended to calculate the hydrodynamic lift and drag on a fully cavitated hydrofoil of arbitrary camber at arbitrary cavitation number. A numerical example is given for a circular hydrofoil subtending an arc angle of 160, for which the corresponding nonlinear solution is available. A direct comparison between these two theories is made explicitly for the flat plate and the circular arc hydrofoil. Some important aspects of the results are discussed subsequently

    Generation of upstream advancing solitons by moving disturbances

    Get PDF
    This study investigates the recently identified phenomenon whereby a forcing disturbance moving steadily with a transcritical velocity in shallow water can generate, periodically, a succession of solitary waves, advancing upstream of the disturbance in procession, while a train of weakly nonlinear and weakly dispersive waves develops downstream of a region of depressed water surface trailing just behind the disturbance. This phenomenon was numerically discovered by Wu & Wu (1982) based on the generalized Boussinesq model for describing two-dimensional long waves generated by moving surface pressure or topography. In a joint theoretical and experimental study, Lee (1985) found a broad agreement between the experiment and two theoretical models, the generalized Boussinesq and the forced Korteweg de Vries (fKdV) equations, both containing forcing functions. The fKdV model is applied in the present study to explore the basic mechanism underlying the phenomenon. To facilitate the analysis of the stability of solutions of the initial-boundary-value problem of the fKdV equation, a family of forced steady solitary waves is found. Any such solution, if once established, will remain permanent in form in accordance with the uniqueness theorem shown here. One of the simplest of the stationary solutions, which is a one-parameter family and can be scaled into a universal similarity form, is chosen for stability calculations. As a test of the computer code, the initially established stationary solution is found to be numerically permanent in form with fractional uncertainties of less than 2% after the wave has traversed, under forcing, the distance of 600 water depths. The other numerical results show that when the wave is initially so disturbed as to have to rise from the rest state, which is taken as the initial value, the same phenomenon of the generation of upstream-advancing solitons is found to appear, with a definite time period of generation. The result for this similarity family shows that the period of generation, T[sub]S, and the scaled amplitude [alpha] of the solitons so generated are related by the formula T[sub]S = const [alpha]^-3/2. This relation is further found to be in good agreement with the first-principle prediction derived here based on mass, momentum and energy considerations of the fKdV equation

    Hydromechanics of swimming propulsion. part 1. Swimming of a two-dimensional flexible plate at variable forward speeds in an inviscid fluid

    Get PDF
    The most effective movements of swimming aquatic animals of almost all sizes appear to have the form of a transverse wave progressing along the body from head to tail. The main features of this undulatory mode of propulsion are discussed for the case of large Reynolds number, based on the principle of energy conservation. The general problem of a two-dimensional flexible plate, swimming at arbitrary, unsteady forward speeds, is solved by applying the linearized inviscid flow theory. The large-time asymptotic behaviour of an initial-value harmonic motion shows the decay of the transient terms. For a flexible plate starting with a constant acceleration from at rest, the small-time solution is evaluated and the initial optimum shape is determined for the maximum thrust under conditions of fixed power and negligible body recoil
    • …
    corecore