24,149 research outputs found

    Hysteresis measurement of anomalous microwave surface resistance in superconducting thin films

    Full text link
    The anomalous decrease in microwave surface resistance, R_{s}, of superconducting YBa_{2}Cu_{3}O_{7-d} (YBCO) thin films in the presence of a low dc magnetic field is studied using a microstrip resonator technique. We have done a dc field hysteresis measurement of R_{s} to study the effects of vortex penetration on the anomalous effect. It is shown that the anomaly happens at a field level far below the low critical field, H_{c1,strip}, of the superconducting microstrip and vortex (Abrikosov) penetration would eliminate the anomalous effect observed at low field. This implies that the anomalous effect is not contributed by vortices.Comment: 2 pages, 1 figure, submitted to Physica C for M2S-HTSC-VI Proceeding

    Quantifying Changes in Creativity: Findings from an Engineering Course on the Design of Complex and Origami Structures

    Get PDF
    Engineering educators have increasingly sought strategies for integrating the arts into their curricula. The primary objective of this integration varies, but one common objective is to improve students’ creative thinking skills. In this paper, we sought to quantify changes in student creativity that resulted from participation in a mechanical engineering course targeted at integrating engineering, technology, and the arts. The course was team taught by instructors from mechanical engineering and art. The art instructor introduced origami principles and techniques as a means for students to optimize engineering structures. Through a course project, engineering student teams interacted with art students to perform structural analysis on an origami-based art installation, which was the capstone project of the art instructor’s undergraduate origami course. Three engineering student teams extended this course project to collaborate with the art students in the final design and physical installation. To evaluate changes in student creativity, we used two instruments: a revised version of the Reisman Diagnostic Creativity Assessment (RDCA) and the Innovative Behavior Scales. Initially, the survey contained 12 constructs, but three were removed due to poor internal consistency reliability: Extrinsic Motivation; Intrinsic Motivation; and Tolerance of Ambiguity. The nine remaining constructs used for comparison herein included: • Originality: Confidence in developing original, innovative ideas • Ideation: Confidence in generating many ideas • Risk Taking: Adventurous; Brave • Openness of Process: Engaging various potentialities and resisting closure • Iterative Processing: Willingness to iterate on one’s solution • Questioning: Tendency to ask lots of questions • Experimenting/exploring: Tendency to physically or mentally take things apart • Idea networking: Tendency to engage with diverse others in communicative acts • Observing: Tendency to observe the surrounding world By conducting a series of paired t-tests to ascertain if pre and post-course responses were significantly different on the above constructs, we found five significant changes. In order of significance, these included Idea Networking; Questioning; Observing; Originality; and Ideation. To help explain these findings, and to identify how this course may be improved in subsequent offerings, the discussion includes the triangulation of these findings in light of teaching observations, responses from a mid-semester student focus group session, and informal faculty reflections. We close with questions that we and others ought to address as we strive to integrate engineering, technology, and the arts. We hope that these findings and discussion will guide other scholars and instructors as they explore the impact of art on engineering design learning, and as they seek to evaluate student creativity resulting from courses with similar aims

    N-Benzyl­idenenordehydro­abietylamine

    Get PDF
    The title compound [systematic name: (1R,4aS,10aR,E)-N-benzyl­idene-7-isopropyl-1,4a-dimethyl-1,2,3,4,4a,9,10,10a-octa­hydro­phenanthren-1-amine], C26H33N, has been synthesized from nor-dehydro­abietylamine and benzaldehyde. The two cyclo­hexane rings form a trans ring junction with classic chair and half-chair conformations, respectively, the two methyl groups are on the same side of tricyclic hydro­phenanthrene structure. The dihedral angle between two benzene rings is 44.2 (4)°. The C=N bond is in an E configuration

    Simultaneous measurement of pressure evolution of crystal structure and superconductivity in FeSe0.92 using designer diamonds

    Full text link
    Simultaneous high pressure x-ray diffraction and electrical resistance measurements have been carried out on a PbO type {\alpha}-FeSe0.92 compound to a pressure of 44 GPa and temperatures down to 4 K using designer diamond anvils at synchrotron source. At ambient temperature, a structural phase transition from a tetragonal (P4/nmm) phase to an orthorhombic (Pbnm) phase is observed at 11 GPa and the Pbnm phase persists up to 74 GPa. The superconducting transition temperature (TC) increases rapidly with pressure reaching a maximum of ~28 K at ~ 6 GPa and decreases at higher pressures, disappearing completely at 14.6 GPa. Simultaneous pressure-dependent x-ray diffraction and resistance measurements at low temperatures show superconductivity only in a low pressure orthorhombic (Cmma) phase of the {\alpha}-FeSe0.92. Upon increasing pressure at 10 K near TC, crystalline phases change from a mixture of orthorhombic (Cmma) and hexagonal (P63/mmc) to a high pressure orthorhombic (Pbnm) phase near 6.4 GPa where TC is maximum.Comment: 6 figures, 6 pages, Subjects: Superconductivity and Condensed matter (structural, mechanical & thermal
    corecore