21 research outputs found

    Responsive Au@polymer hybrid microgels for the simultaneous modulation and monitoring of Au-catalyzed chemical reaction

    Get PDF
    National Science Foundation of China [21274118, 91227120, 20923004]; Program for New Century Excellent Talents in University of Ministry of Education of China [NCET-13-0506]; Natural Science Foundation for Distinguished Young Scholars of Fujian Province; Program for New Century Excellent Talents in Fujian Province University; Fundamental Research Funds for the Central Universities [2012121016]; National Fund for Fostering Talents of Basic Science [J1310024]The simultaneous modulation and monitoring of catalysis is possible when using metal@polymer hybrid microgels by rational design. Such hybrid microgels are made of Au nanoparticles covered with a temperature and pH dual-responsive copolymer gel shell of poly(N-isopropylacrylamide-co-allylamine). The Au nanoparticle cores can act as catalysts in a model electron-transfer reaction between hexacyanoferrate(ii) and borohydride ions. The introduction of a smart polymer gel shell onto the Au nanoparticles can not only allow modulation of the catalysis of the Au nanoparticle cores through varying the solution temperature, but also allow label-free in situ localized surface plasmon resonance (LSPR) monitoring of the kinetics and thermodynamics of the catalyzed chemical reaction. Unlike conventional spectroscopic methods that only reflect the overall information occurring in the reaction system, the label-free in situ LSPR monitoring gives local information occurring on the catalytic surface and therefore has the potential to advance our understanding of the catalyzed chemical reaction

    Cr 3+

    No full text

    Device Data Ingestion for Industrial Big Data Platforms with a Case Study

    No full text
    Despite having played a significant role in the Industry 4.0 era, the Internet of Things is currently faced with the challenge of how to ingest large-scale heterogeneous and multi-type device data. In response to this problem we present a heterogeneous device data ingestion model for an industrial big data platform. The model includes device templates and four strategies for data synchronization, data slicing, data splitting and data indexing, respectively. We can ingest device data from multiple sources with this heterogeneous device data ingestion model, which has been verified on our industrial big data platform. In addition, we present a case study on device data-based scenario analysis of industrial big data

    Alteration in bile acids profile in Large White pigs during chronic heat exposure.

    Full text link
    Bile acids (BAs) are critical for cholesterol homeostasis and new roles in metabolism and endocrinology have been demonstrated recently. It remains unknown whether BA metabolism can be affected by heat stress (HS). The objective of this study was to describe the shifts in serum, hepatic and intestinal BA profiles induced by chronic HS. Twenty-seven Large White pigs weighing 40.8+/-2.7kg were assigned to one of the three treatments: a control group (CON, 23 degrees C), a HS group (33 degrees C), or a pair-fed group (PF, 23 degrees C and fed the same amount as HS group) for 21d. The concentrations of taurine-conjugated BAs (TUDCA and THDCA in serum and TCDCA, TUDCA, THDCA and THCA in liver) were decreased in HS and PF pigs. However, in HS pigs, a reduction in taurine-conjugated BAs (TCBA) correlated with decreased liver genes expression of BA synthesis, conjugation and uptake transport. BA regulated-genes (FXR, TGR5 and FGFR4) in HS pigs and TGR5, FGFR4 and KLbeta in PF pigs were down-regulated in liver. In ileum, total BAs and glycoursodeoxycholic acid concentrations were higher in HS pigs than other groups and PF group, respectively (P<0.05). TCBA (P=0.01) and tauroursodeoxycholic acid (P<0.01) were decreased in PF group. BA transporters (OSTalpha and MRP3) were up-regulated in HS pigs compared with CON and PF pigs, respectively (P<0.01). In cecum, ursodeoxycholic acid was higher in HS (P=0.02) group than CON group. The expression of apical sodium-coupled bile acid transporter (P=0.04) was lower in HS pigs than CON pigs, while OSTbeta (P<0.01) was greater in HS group than PF group. These results suggest that chronic HS suppressed liver activity of synthesis and uptake of TCBA, at least in part, which was independent of reduced feed intake

    Study on Permeability Characteristics of Porous Transparent Gels Based on Synthetic Materials

    No full text
    Advanced knowledge of the permeability characteristics of transparent gels play a key role in providing a rational basis for the study of porous polymer permeability and the research on the migration behavior of superpolymer solutions. Thus, a new type of transparent gel was prepared to simulate porous media, with aim to observe and analyze the permeability characteristics of transparent gel under the conditions of our experimental design by combining a transparent soil test and simple particle image velocimetry. The experimental results showed that the permeability of the transparent gel was similar to that through actual soil. The permeability coefficients of the transparent gel under different pressure gradients varied greatly early in the experimental cycle, while changing only slightly afterward, showing an overall trend of decreasing first and then stabilizing. With the increase of the mass ratio, the permeability coefficient of the sample decreased, the distribution of the low-velocity zone of the intercepted section became wider and tended to move upward. Differences in spatial position also caused different patterns of velocity and direction. The findings presented in this paper contribute to providing a new direction for the study of porous polymer permeability and the porous migration of superpolymer solutions

    Determination of Solubility of cAMPNa in Water + (Ethanol, Methanol, and Acetone) within 293.15–313.15 K

    No full text
    The solubility of adenosine 3′,5′-cyclic monophosphate sodium (cAMPNa) in mixed solvents (water+ethanol, water+methanol, and water+acetone) was measured within 293.15−313.15 K under atmospheric pressure. The (CNIBS)/Redlich−Kister model and the modified Apelblat equation were respectively applied to correlate the solubility data to evaluate the effect of the compositional ratio of the organic solvent and the temperature on the solubility in binary solvents, and satisfactory simulation results were obtained. The solubility of cAMPNa was maximal in pure water and markedly diminished at all evaluated temperatures as the mole fraction of the organic solvent in the aqueous mixture increased. The thermodynamic functions for cAMPNa dissolution in the three solvent mixtures were obtained from the solubility data using the van’t Hoff and Gibbs equations, and the dissolution behavior was discussed. Dissolution of cAMPNa was endothermic and nonspontaneous in all cases, and the enthalpy was the major contributing force to the Gibbs energy

    Experimental Study on the Dynamic Rock-Breaking Performance of Pulsed Abrasive Jet Drilling Method

    No full text
    The efficient development of deep oil and gas reservoirs with abundant resources is conducive to meet the growing energy demand. However, it is very difficult to drill in the deep reservoirs such as tight sand gas and shale gas because of their high strength, low porosity, and low permeability. In this study, it is pointed out that developing high-efficiency drilling methods based on new combined water jets is a good approach to promote the rate of penetration (ROP) in such tight deep reservoirs. A pulsed abrasive water jet drilling tool is designed, and its dynamic work principle is analyzed. The hydraulic structure is optimized; meanwhile, the rock-breaking experiments of this structure are carried out. The results show that the rock-breaking performance of the pulsed water jet is much better than that of the continuous water jet. It is also found that the rock-breaking performance of the pulsed abrasive water jet is much better than that of the premixed abrasive water jet. In addition, the best rock-breaking standoff distance, abrasive concentration, and particle size are detected

    Strain-level screening of human gut microbes identifies Blautia producta as a new anti-hyperlipidemic probiotic

    No full text
    ABSTRACTCompelling evidence has tightly linked gut microbiota with host metabolism homeostasis and inspired novel therapeutic potentials against metabolic diseases (e.g., hyperlipidemia). However, the regulatory profile of individual bacterial species and strain on lipid homeostasis remains largely unknown. Herein, we performed a large-scale screening of 2250 human gut bacterial strains (186 species) for the lipid-decreasing activity. Different strains in the same species usually displayed distinct lipid-modulatory actions, showing evident strain-specificity. Among the tested strains, Blautia producta exhibited the most potency to suppress cellular lipid accumulation and effectively ameliorated hyperlipidemia in high fat diet (HFD)-feeding mice. Taking a joint comparative approach of pharmacology, genomics and metabolomics, we identified an anteiso-fatty acid, 12-methylmyristic acid (12-MMA), as the key active metabolite of Bl. Producta. In vivo experiment confirmed that 12-MMA could exert potent hyperlipidemia-ameliorating efficacy and improve glucose metabolism via activating G protein-coupled receptor 120 (GPR120). Altogether, our work reveals a previously unreported large-scale lipid-modulatory profile of gut microbes at the strain level, emphasizes the strain-specific function of gut bacteria, and provides a possibility to develop microbial therapeutics against hyperlipidemia based on Bl. producta and its metabolite
    corecore